Properties of Convergence and Convergence almost Surely

A sequence of random variable {Xn} is said to converge to X almost surely (a.s.) or strongly, denoated by $$X_n \ \overset{a.s.}{\rightarrow} \ X, \ if$$ $$P \ \left ( \ \lim_{n \to \infty} \ X_n \ = \ X \ \right ) \ = \ 1$$ In other words, a sequence of random variables {Xn} is said to converge to X almost surely, if $$\lim_{n \to \infty} \ X_n \ (w) \ = \ X \ (w)$$ for almost all member of w of the sample space S on which the random variables are defined, i.e. for all w ∈ S. $$Symbolically \ X_n \ \overset{a.s.}{\rightarrow} \ X iff \ X_n \ (w) \ \rightarrow \ X \ (w) \ for \ w \ ∈ \ S. $$ Thus, the convergence of Xn to X almost surely (or strongly) is, in fact, the convergence of Xn to X with probability 1. It is difficult to obtain frequently this mode of convergence. When the mode of convergence almost surely takes place, the strong law oflarge numbers hold.

Summary

A sequence of random variable {Xn} is said to converge to X almost surely (a.s.) or strongly, denoated by $$X_n \ \overset{a.s.}{\rightarrow} \ X, \ if$$ $$P \ \left ( \ \lim_{n \to \infty} \ X_n \ = \ X \ \right ) \ = \ 1$$ In other words, a sequence of random variables {Xn} is said to converge to X almost surely, if $$\lim_{n \to \infty} \ X_n \ (w) \ = \ X \ (w)$$ for almost all member of w of the sample space S on which the random variables are defined, i.e. for all w ∈ S. $$Symbolically \ X_n \ \overset{a.s.}{\rightarrow} \ X iff \ X_n \ (w) \ \rightarrow \ X \ (w) \ for \ w \ ∈ \ S. $$ Thus, the convergence of Xn to X almost surely (or strongly) is, in fact, the convergence of Xn to X with probability 1. It is difficult to obtain frequently this mode of convergence. When the mode of convergence almost surely takes place, the strong law oflarge numbers hold.

Things to Remember

  • $$if \ X_n \ \overset{P}{\rightarrow} \ X \ and \ Y_n \ \overset{P}{\rightarrow} \ Y \ then,$$

    $$X_n \ \ Y_n \ \overset{P}{\rightarrow} \ X \ \ Y$$

  • $$if \ X_n \ \overset{P}{\rightarrow} \ X \ and \ Y_n \ \overset{P}{\rightarrow} \ Y \ then,$$

    $$\frac{X_n}{Y_n} \ \overset{P}{\rightarrow} \ \frac{x}{y}$$

    provided P ( Yn = 0 ) = P ( Y = 0 )≠ 0.

  • A sequence of random variable {Xn} is said to converge to X almost surely (a.s.) or strongly, denoated by 

    $$X_n \ \overset{a.s.}{\rightarrow} \ X, \ if$$

    $$P \ \left ( \ \lim_{n \to \infty} \ X_n \ = \ X \ \right ) \ = \ 1$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Properties of Convergence and Convergence almost Surely

Properties of Convergence and Convergence almost Surely

Property 4:

$$if \ X_n \ \overset{P}{\rightarrow} \ X \ and \ Y_n \ \overset{P}{\rightarrow} \ Y \ then,$$

$$X_n \ \ Y_n \ \overset{P}{\rightarrow} \ X \ \ Y$$

Proof:

For every positive ∈ ( > 0 ), we have

$$P \ \left [ \ | \ X_n Y_n \ - \ XY \ | \ ≥ \ ∈ \ \right ] \ = \ P \ \left [ \ | \ X_n \ Y_n \ - \ X_n \ Y \ + \ X_n \ Y \ - \ X \ Y \ | \ ≥ \ ∈ \ \right ]$$

$$= \ P \ \left [ \ | \ X_n \ ( \ Y_n \ - \ Y \ ) \ | \ ≥ \ \frac{∈}{2} \ \right ]\ + \ P \ \left [ \ | \ Y \ ( \ X_n \ - \ X \ ) \ | \ ≥ \ \frac{∈}{2} \ \right ]$$

The first term is

$$= \ P \ \left [ \ | \ X_n \ ( \ Y_n \ - \ Y \ ) \ | \ ≥ \ \frac{∈}{2} \ \right ] \ = \ P \ \left [ \ | \ X_n \ ( \ Y_n \ - \ Y \ ) \ | \ ≥ \ \frac{∈}{2}, \ | \ Y_n \ - \ Y \ |≥ \ \delta \ \right ]$$

$$U \ P \ \left [ \ | \ X_n \ ( \ Y_n \ Y \ ) \ | \ ≥ \ \frac{∈}{2}, \ | \ Y_n \ Y \ | ≥ \ \delta \ \right ]$$

$$≤ \ P \ \left [ \ | \ Y_n \ - \ Y \ | ≤\ \delta \ \right ] \ U \ P \ \left [ \ | \ X_n \ | \ ≥ \ \frac{∈}{2 \delta} \ \right ]$$

$$≤ \ P \ \left [ \ | \ Y_n \ - \ Y \ | ≤ \ \delta \ \right ] \ + \ P \ \left [ \ | \ X_n \ | \ ≥ \ \frac{∈}{2 \delta} \ \right ]$$

$$≤ \ P \ \left [ \ | \ Y_n \ - \ Y \ | ≤ \ \delta \ \right ] \ + \ P \ \left [ \ | \ X_n \ | \ ≥ \ \frac{\eta}{2} \ \right ] \ \ \ ; \ \eta \ > \ 0$$

$$\rightarrow \ 0 \ and \ n \ \rightarrow \ \infty$$

It is similar to second term also.

$$Thus,\ for \ any \ arbitrary \ \eta \ > \ 0,$$

$$P \ \left [ \ | \ X_n \ Y_n \ \rightarrow \ X \ Y \ | \ ≥ \ ∈ \ \right ] \ \rightarrow \ 0 \ \ \ \ as \ n \ \rightarrow \ 0.$$

Hence the property is proved.

Property 5:

$$if \ X_n \ \overset{P}{\rightarrow} \ X \ and \ Y_n \ \overset{P}{\rightarrow} \ Y \ then,$$

$$\frac{X_n}{Y_n} \ \overset{P}{\rightarrow} \ \frac{x}{y}$$

provided P ( Yn = 0 ) = P ( Y = 0 )≠ 0.

Proof:

Here, we first need to prove

$$P \ \left [ \ | \ \frac{1}{Y_n} \ - \ \frac{1}{Y} \ |\ ≥ \ ∈ \ \right ] \ \rightarrow \ 0.$$

For this we use an anpther property of convergence stated as

$$If \ X_n \ \overset{P}{\rightarrow} \ 1 \, yhen \ \frac{1}{X_n}\ \overset{P}{\rightarrow} \ 1.$$

$$Then \ if \ Y_n \ \ \overset{P}{\rightarrow} \ Y \ it \ implies \ that$$

$$\ \frac{Y_n}{Y}\ \overset{P}{\rightarrow} \ 1 \ and \ hence \ \frac{Y}{Y_n}\ \overset{P}{\rightarrow} \ 1$$

$$Thus, \ X_n \ \frac{Y}{Y_n}\ \overset{P}{\rightarrow} \ X.$$

$$\Rightarrow \ \frac{X_n}{Y_n}\ \overset{P}{\rightarrow} \ \frac{X}{Y}.$$

Which is the required result.

Convergence Almost Surely

Definition:

A sequence of random variable {Xn} is said to converge to X almost surely (a.s.) or strongly, denoated by

$$X_n \ \overset{a.s.}{\rightarrow} \ X, \ if$$

$$P \ \left ( \ \lim_{n \to \infty} \ X_n \ = \ X \ \right ) \ = \ 1$$

In other words, a sequence of random variables {Xn} is said to converge to X almost surely, if

$$\lim_{n \to \infty} \ X_n \ (w) \ = \ X \ (w)$$

for almost all member of w of the sample space S on which the random variables are defined, i.e. for all w∈ S.

$$Symbolically \ X_n \\overset{a.s.}{\rightarrow} \ X iff \ X_n \ (w) \ \rightarrow \ X \ (w) \ for \w \ ∈ \ S. $$

Thus, the convergence of Xn to X almost surely (or strongly) is, in fact, the convergence ofXn to X with probability 1. It is difficult to obtain frequently this mode of convergence. When the mode of convergence almost surely takes place, the strong law of large numbers hold.

Bibliography

Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.

Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.

Lesson

Convergence

Subject

Statistics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.