Negative Exponential Distribution
A random variable (rv) X having a probability density function (pdf) : $$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$ otherwise , 0 is said to have a negative exponential distribution with parameterθ (>0). $$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$ $$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$ $$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$ $$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$
Summary
A random variable (rv) X having a probability density function (pdf) : $$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$ otherwise , 0 is said to have a negative exponential distribution with parameterθ (>0). $$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$ $$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$ $$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$ $$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$
Things to Remember
-
A random variable (rv) X having a probability density function (pdf) :
$$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$
otherwise , 0
is said to have a negative exponential distribution with parameterθ (>0).
-
$$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$
$$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$
$$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$
$$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Negative Exponential Distribution
Negative Exponential Distribution
An exponential distribution is one of the most frequently used continious probability distributions in stastics. The negative exponential distribution is a special case of two parameter gamma distribution G(α,β), whenα = 1. The exponential distribution has most application in queuing theory and realibilitytheory.
Definition:
A random variable (rv) X having a probability density function (pdf) :
$$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$
otherwise , 0
is said to have a negative exponential distribution with parameterθ (>0).
If a random variable X is distributed as a negative exponential distribution with parameterθ, then we write X ~ Expo (θ).
It can easily prove that the function f(x) is a probability density function (pdf), since
$$\int_0^{\infty} \ f(x) \ dx \ = \ \int_0^{\infty} \ \theta \ {e^-}^{\theta x} \ dx$$
$$= \ \left [ \ - \ {e^-}^{\theta x} \ \right ]_0^{\infty} \ = \ 1$$
The distribution function of the negative exponential distribution is given by
F(x) = p (X≤ x)
$$= \ \int_0^{x} \ f(u) \ du$$
$$= \ \theta \ \int_0^{x} \ {e^-}^{\theta u} \ du$$
$$= \ \left [ \ - \ {e^-}^{\theta u} \ \right ]_0^{x}$$
$$= \ 1 \ - \ {e^-}^{\theta x}$$
Hence,
F(x) = 0 ; x≤ 0
F(x) = 1 - e-θx; x > 0
F(x) = 1 ; otherwise
The graph of the probability density function and the distribution function of negative exponential distribution are given in the following figure:
www.r-tutor.com
Note:
Let X ~ G (α,β). Ifα = 1 andβ = θ, then X ~ G (1,θ) = Expo (θ).
Moments of Negative Exponential Distributio
Moments about origin
The rth moment about origin of negative exponential distribution is given by
$$\mu_r^{'} \ = \ E (X^r)$$
$$= \ \int_0^{\infty} \ x^r \ f(x) \ dx$$
$$= \ \theta \ \int_0^{\infty} \ x^r \ {e^-}^{\theta x} \ dx$$
Put y =θx so that
$$dx \ = \ \frac{dy}{d\theta}$$
$$\therefore \ \mu_r^{'} \ = \ \theta \ \int_{0}^{\infty} \ \left ( \ \frac{y}{\theta} \ \right )^r \ {e^-}^{y} \ \frac{dx}{\theta}$$
$$= \ \frac{1}{\theta^r} \ \int_0^{\infty} \ {e^-}^{y} \ {y^(}^{r+1)-1} \ dy$$
$$= \ \frac{1}{\theta^r} \ \Gamma(r+1)$$
$$\mu_r^{'} \ = \ \frac{r!}{\theta^r} \ \ \ \ \ \ ; \ r \ = \ 1, \ 2, \ 3, \ 4$$
Therefore
$$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$
$$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$
$$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$
$$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$
Moments about Mean:
The first four Central moments of the exponential distribution are obtained as :
$$\mu_1 \ = \ 0$$
$$\mu_2 \ = \ \mu_2^{'} \ - \ (\mu_1^{'})^2$$
$$= \ \frac{2}{\theta^2} \ - \ \left ( \ \frac{1}{\theta} \ \right )^2 \ = \ \frac{1}{\theta^2} \ = \ Variance$$
$$\mu_3 \ = \ \mu_3^{'} \ - \ 3 \mu_2^{'} \ \mu_1^{'} \ + \ 2 (\mu_1^{'})^3$$
$$= \ \frac{6}{\theta^3} \ - \ 3 \ . \ \frac{2}{\theta^2} \ . \ \frac{1}{\theta} \ + \ 2 \ \left ( \ \frac{1}{\theta} \ \right )^3$$
$$= \ \frac{2}{\theta^3}$$
$$\mu_4 \ = \ \mu_4^{'} \ - \ 4 \mu_3{'} \ \mu_1^{'} \ + \ 6 \ \mu_2^{'} \ ( \mu_1^{'} )^2 \ - \ 3 \ (\mu_1^{'})^4$$
$$= \ \frac{24}{\theta^4} \ - \ 4 \ . \ \frac{6}{\theta^3} \ . \ \frac{1}{\theta} \ + \ 6 \ \frac{2}{\theta^2} \ . \ \left ( \frac{1}{\theta} \right )^2 \ - \ 3 \ . \left( \ \frac{1}{\theta} \ \right )^4$$
$$= \ \frac{9}{\theta^4}$$
Also, the beta and gamma coefficient of the exponential distribution are obtained as
$$\beta_1 \ = \ \frac{\mu_3^{2}}{\mu_2^{3}} = \ 4$$
Again,
$$\beta_2 \ = \ \frac{\mu_4}{\mu_2^{2}} \ = \ 9$$
$$ Therefore, \ \gamma_1 \ = \ \sqrt\beta_1 \ = \ 2$$
$$and, \gamma_2 \ = \ \beta_2 \ - 3 \ = \ 6$$
Moment Generating Function of Negative Exponential Distribution
Let X has a negative exponential distribution with probability density function (pdf)
f(x) =θ e-θx ; x > 0
The moment generating function of X is given by
$$M_X (t) \ = \ E({e^t}^{x})$$
$$= \ \int_0^{\infty} \ {e^t}^{x} \ f(x) \ dx$$
$$= \ \int_0^{\infty} \ {e^t}^{x} \ \theta \ {e^-}^{\theta x} \ dx$$
$$= \ \theta \ \int_0^{\infty} \ {e^-}^{(\theta - t) x} \ dx$$
$$= \ \frac{\theta}{\theta \ - t} \ \left [ \ - \ {e^-}^{(\theta-t)x} \ \right ]_0^{\infty}$$
$$= \ frac{\theta}{\theta \ - \ t}$$
$$= \ \frac{1}{\left ( 1 \ - \ \frac{t}{\theta} \ \right )}$$
$$\Rightarrow \ M_x(t) \ = \ {\left ( 1 \ - \ \frac{t}{\theta} \ \right )^-}^{1} \ \ \ \ ; \ t \ < \ \theta$$
To find moments:
Expanding Mx(t), we have
$$M_x(t) \ = \ 1 \ + \ \frac{t}{\theta} \ + \ \frac{t^2}{\theta^2} \ + \ \frac{t^3}{\theta^3} \ + \ . \ . \ . \ + \ \frac{t^r}{\theta^t} \ + \ . \ . \ .$$
$$\therefore \ \mu_r^{'} \ = \ Coefficient \ of \ \frac{t^r}{r!} \ in \ M_x(t).$$
$$= \ \frac{r!}{\theta^r} \ \ \ \ \ \ \ \ for \ r \ = \ 1, \ 2, \ 3, \ 4$$
Then, the moments of the exponential distribution can be easily obtained.
Bibliography
Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.
Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.
Lesson
continuious probablity distributions
Subject
Statistics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.