Negative Exponential Distribution

A random variable (rv) X having a probability density function (pdf) : $$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$ otherwise , 0 is said to have a negative exponential distribution with parameterθ (>0). $$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$ $$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$ $$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$ $$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$

Summary

A random variable (rv) X having a probability density function (pdf) : $$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$ otherwise , 0 is said to have a negative exponential distribution with parameterθ (>0). $$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$ $$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$ $$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$ $$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$

Things to Remember

  1. A random variable (rv) X having a probability density function (pdf) :

    $$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$

    otherwise , 0

    is said to have a negative exponential distribution with parameterθ (>0).

  2. $$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$

    $$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$

    $$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$

    $$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Negative Exponential Distribution

Negative Exponential Distribution

Negative Exponential Distribution

An exponential distribution is one of the most frequently used continious probability distributions in stastics. The negative exponential distribution is a special case of two parameter gamma distribution G(α,β), whenα = 1. The exponential distribution has most application in queuing theory and realibilitytheory.

Definition:

A random variable (rv) X having a probability density function (pdf) :

$$f(x) \ = \ f(x;\theta) \ = \ \theta \ {e^-}^{\theta x} \ \ \ \ \ ; \ x \ > \ 0$$

otherwise , 0

is said to have a negative exponential distribution with parameterθ (>0).

If a random variable X is distributed as a negative exponential distribution with parameterθ, then we write X ~ Expo (θ).

It can easily prove that the function f(x) is a probability density function (pdf), since

$$\int_0^{\infty} \ f(x) \ dx \ = \ \int_0^{\infty} \ \theta \ {e^-}^{\theta x} \ dx$$

$$= \ \left [ \ - \ {e^-}^{\theta x} \ \right ]_0^{\infty} \ = \ 1$$

The distribution function of the negative exponential distribution is given by

F(x) = p (X≤ x)

$$= \ \int_0^{x} \ f(u) \ du$$

$$= \ \theta \ \int_0^{x} \ {e^-}^{\theta u} \ du$$

$$= \ \left [ \ - \ {e^-}^{\theta u} \ \right ]_0^{x}$$

$$= \ 1 \ - \ {e^-}^{\theta x}$$

Hence,

F(x) = 0 ; x≤ 0

F(x) = 1 - e-θx; x > 0

F(x) = 1 ; otherwise

The graph of the probability density function and the distribution function of negative exponential distribution are given in the following figure:

www.r-tutor.com Figure : Negative exponential curvewww.r-tutor.com

Figure : Negative exponential curve

Note:

Let X ~ G (α,β). Ifα = 1 andβ = θ, then X ~ G (1,θ) = Expo (θ).

Moments of Negative Exponential Distributio

Moments about origin

The rth moment about origin of negative exponential distribution is given by

$$\mu_r^{'} \ = \ E (X^r)$$

$$= \ \int_0^{\infty} \ x^r \ f(x) \ dx$$

$$= \ \theta \ \int_0^{\infty} \ x^r \ {e^-}^{\theta x} \ dx$$

Put y =θx so that

$$dx \ = \ \frac{dy}{d\theta}$$

$$\therefore \ \mu_r^{'} \ = \ \theta \ \int_{0}^{\infty} \ \left ( \ \frac{y}{\theta} \ \right )^r \ {e^-}^{y} \ \frac{dx}{\theta}$$

$$= \ \frac{1}{\theta^r} \ \int_0^{\infty} \ {e^-}^{y} \ {y^(}^{r+1)-1} \ dy$$

$$= \ \frac{1}{\theta^r} \ \Gamma(r+1)$$

$$\mu_r^{'} \ = \ \frac{r!}{\theta^r} \ \ \ \ \ \ ; \ r \ = \ 1, \ 2, \ 3, \ 4$$

Therefore

$$\mu_1^{'} \ = \ \frac{1}{\theta} \ = \ Mean \ (Reciporcal \ of \ the \ parameter \ \theta)$$

$$\mu_2^{'} \ = \ \frac{2}{\theta^2}$$

$$\mu_3^{'} \ = \ \frac{3!}{\theta^3} \ = \ \frac{6}{\theta^3}$$

$$\mu_4^{'} \ = \ \frac{4!}{\theta^4} \ = \ \frac{24}{\theta^4}$$

Moments about Mean:

The first four Central moments of the exponential distribution are obtained as :

$$\mu_1 \ = \ 0$$

$$\mu_2 \ = \ \mu_2^{'} \ - \ (\mu_1^{'})^2$$

$$= \ \frac{2}{\theta^2} \ - \ \left ( \ \frac{1}{\theta} \ \right )^2 \ = \ \frac{1}{\theta^2} \ = \ Variance$$

$$\mu_3 \ = \ \mu_3^{'} \ - \ 3 \mu_2^{'} \ \mu_1^{'} \ + \ 2 (\mu_1^{'})^3$$

$$= \ \frac{6}{\theta^3} \ - \ 3 \ . \ \frac{2}{\theta^2} \ . \ \frac{1}{\theta} \ + \ 2 \ \left ( \ \frac{1}{\theta} \ \right )^3$$

$$= \ \frac{2}{\theta^3}$$

$$\mu_4 \ = \ \mu_4^{'} \ - \ 4 \mu_3{'} \ \mu_1^{'} \ + \ 6 \ \mu_2^{'} \ ( \mu_1^{'} )^2 \ - \ 3 \ (\mu_1^{'})^4$$

$$= \ \frac{24}{\theta^4} \ - \ 4 \ . \ \frac{6}{\theta^3} \ . \ \frac{1}{\theta} \ + \ 6 \ \frac{2}{\theta^2} \ . \ \left ( \frac{1}{\theta} \right )^2 \ - \ 3 \ . \left( \ \frac{1}{\theta} \ \right )^4$$

$$= \ \frac{9}{\theta^4}$$

Also, the beta and gamma coefficient of the exponential distribution are obtained as

$$\beta_1 \ = \ \frac{\mu_3^{2}}{\mu_2^{3}} = \ 4$$

Again,

$$\beta_2 \ = \ \frac{\mu_4}{\mu_2^{2}} \ = \ 9$$

$$ Therefore, \ \gamma_1 \ = \ \sqrt\beta_1 \ = \ 2$$

$$and, \gamma_2 \ = \ \beta_2 \ - 3 \ = \ 6$$

Moment Generating Function of Negative Exponential Distribution

Let X has a negative exponential distribution with probability density function (pdf)

f(x) =­θ e-θx ; x > 0

The moment generating function of X is given by

$$M_X (t) \ = \ E({e^t}^{x})$$

$$= \ \int_0^{\infty} \ {e^t}^{x} \ f(x) \ dx$$

$$= \ \int_0^{\infty} \ {e^t}^{x} \ \theta \ {e^-}^{\theta x} \ dx$$

$$= \ \theta \ \int_0^{\infty} \ {e^-}^{(\theta - t) x} \ dx$$

$$= \ \frac{\theta}{\theta \ - t} \ \left [ \ - \ {e^-}^{(\theta-t)x} \ \right ]_0^{\infty}$$

$$= \ frac{\theta}{\theta \ - \ t}$$

$$= \ \frac{1}{\left ( 1 \ - \ \frac{t}{\theta} \ \right )}$$

$$\Rightarrow \ M_x(t) \ = \ {\left ( 1 \ - \ \frac{t}{\theta} \ \right )^-}^{1} \ \ \ \ ; \ t \ < \ \theta$$

To find moments:

Expanding Mx(t), we have

$$M_x(t) \ = \ 1 \ + \ \frac{t}{\theta} \ + \ \frac{t^2}{\theta^2} \ + \ \frac{t^3}{\theta^3} \ + \ . \ . \ . \ + \ \frac{t^r}{\theta^t} \ + \ . \ . \ .$$

$$\therefore \ \mu_r^{'} \ = \ Coefficient \ of \ \frac{t^r}{r!} \ in \ M_x(t).$$

$$= \ \frac{r!}{\theta^r} \ \ \ \ \ \ \ \ for \ r \ = \ 1, \ 2, \ 3, \ 4$$

Then, the moments of the exponential distribution can be easily obtained.

Bibliography

Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.

Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.

Lesson

continuious probablity distributions

Subject

Statistics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.