Moments and Moment Generating Function of Standard Laplace Distribution
Thus, we get first four raw moments about origin as $$\mu_1^{'} \ = \ 0$$ $$\mu_2^{'} \ = \ 2$$ $$\mu_3^{'} \ = \ 0$$ $$\mu_4^{'} \ = \ 24$$ Sinceμ1'= 0, the cental moments of the standard Laplace distribution coincide with the raw moments. Then, $$\mu_1 \ = \ 0$$ $$\mu_2 \ = \ \mu_2^{'} \ = \ 2,$$ $$\mu_3 \ = \ \mu_3^{'} \ = \ 0,$$ $$\mu_4 \ = \ \mu_4^{'} \ = \ 24$$ Hence, the standard Laplace distribution has mean = 0 and variance = 2. Also, the moment coefficient of skewness is $$\beta_1 \ = \ \frac{\mu_3^{2}}{\mu_2^{3}} \ = 0$$ $$\Rightarrow \ \gamma_1 \ = \ \sqrt \beta_1 \ = \ 0$$ and the moment coefficient of kurtosis is $$\beta_2 \ = \ \frac{\mu_4}{\mu_2^{2}} \ = \ \frac{24}{2^2} \ = \ 6$$ $$\Rightarrow \ \gamma_2 \ = \ \beta_2 \ - \ 3 \ = \ 6 \ - \ 3 \ = \ 3$$ Hence, it can be concluded from the values ofγ1 andγ2 that the standard Laplace distribution is symmetrical but it is leptokurtic
Summary
Thus, we get first four raw moments about origin as $$\mu_1^{'} \ = \ 0$$ $$\mu_2^{'} \ = \ 2$$ $$\mu_3^{'} \ = \ 0$$ $$\mu_4^{'} \ = \ 24$$ Sinceμ1'= 0, the cental moments of the standard Laplace distribution coincide with the raw moments. Then, $$\mu_1 \ = \ 0$$ $$\mu_2 \ = \ \mu_2^{'} \ = \ 2,$$ $$\mu_3 \ = \ \mu_3^{'} \ = \ 0,$$ $$\mu_4 \ = \ \mu_4^{'} \ = \ 24$$ Hence, the standard Laplace distribution has mean = 0 and variance = 2. Also, the moment coefficient of skewness is $$\beta_1 \ = \ \frac{\mu_3^{2}}{\mu_2^{3}} \ = 0$$ $$\Rightarrow \ \gamma_1 \ = \ \sqrt \beta_1 \ = \ 0$$ and the moment coefficient of kurtosis is $$\beta_2 \ = \ \frac{\mu_4}{\mu_2^{2}} \ = \ \frac{24}{2^2} \ = \ 6$$ $$\Rightarrow \ \gamma_2 \ = \ \beta_2 \ - \ 3 \ = \ 6 \ - \ 3 \ = \ 3$$ Hence, it can be concluded from the values ofγ1 andγ2 that the standard Laplace distribution is symmetrical but it is leptokurtic
Things to Remember
- The standard Laplace distribution is symmetrical but it is leptokurtic.
- The characteristic function has only the terms of even powers of t, all the moments of odd order vavish.
-
The inter-quartile range of standard Laplace distribution is given by
Q3 - Q2 = loge 2 - (-loge 2)
= 2 loge 2
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Moments and Moment Generating Function of Standard Laplace Distribution
Moments of Standard Laplace Distribution:
Let X ~ L (0,1), ie. a random variable X follows a standard Laplace distribution, then the rth moment about origin of X is given by
$$\mu_r^{'} \ = \ E (X^r)$$
$$= \ \int_{-\infty}^{\infty} \ f(x) \ dx$$
$$= \ \frac{1}{2} \ \int_{-\infty}^{\infty} \ x^r \ {e^-}^{|x|} \ dx$$
$$= \ \frac{1}{2} \ \left [ \ \int_{-\infty}^{0} \ x^r \ e^x \ dx \ + \ \int_{0}^{\infty} \ x^r \ {e^-}^{x} \ dx \ \right ]$$
Here,
$$\int_{-\infty}^{0} \ x^r \ e^x \ dx \ = \ \int_{-\infty}^{0} \ (-y)^r \ {e^-}^{y} \ (-dy) \ \ [ \ putting \ x \ = \ - \ y, \ so \ that \ dx \ = \ - \ dy \ ]$$
$$= \ (-1)^r \ \int_{0}^{\infty} \ y^r \ {e^-}^{y} \ dy$$
$$= \ (-1)^r \ \Gamma(r+1)$$
$$= \ (-1)^r \ r!$$
$$\therefore \ \mu_r^{'} \ = \ \frac{1}{2} \ [ (-1)^r \ r! \ + \ r! \ ]$$
$$\mu_r^{'} \ = \ \frac{(-1)^r + 1}{2} \ r!$$
Thus, we get first four raw moments about origin as
$$\mu_1^{'} \ = \ 0$$
$$\mu_2^{'} \ = \ 2$$
$$\mu_3^{'} \ = \ 0$$
$$\mu_4^{'} \ = \ 24$$
Since μ1'= 0, the cental moments of the standard Laplace distribution coincide with the raw moments. Then,
$$\mu_1 \ = \ 0$$
$$\mu_2 \ = \ \mu_2^{'} \ = \ 2,$$
$$\mu_3 \ = \ \mu_3^{'} \ = \ 0,$$
$$\mu_4 \ = \ \mu_4^{'} \ = \ 24$$
Hence, the standard Laplace distribution has mean = 0 and variance = 2.
Also, the moment coefficient of skewness is
$$\beta_1 \ = \ \frac{\mu_3^{2}}{\mu_2^{3}} \ = 0$$
$$\Rightarrow \ \gamma_1 \ = \ \sqrt \beta_1 \ = \ 0$$
and the moment coefficient of kurtosis is
$$\beta_2 \ = \ \frac{\mu_4}{\mu_2^{2}} \ = \ \frac{24}{2^2} \ = \ 6$$
$$\Rightarrow \ \gamma_2 \ = \ \beta_2 \ - \ 3 \ = \ 6 \ - \ 3 \ = \ 3$$
Hence, it can be concluded from the values ofγ1 andγ2 that the standard Laplace distribution is symmetrical but it is leptokurtic.
Moment Generating Function of Standard Laplace Distribution:
The moment generating function of the double exponential distribution is given by
$$M_X(t) \ = \ E({e^t}^{x}) \ = \ \int_{-\infty}^{\infty} \ {e^t}^{x} \ \frac{1}{2} \ {e^-}^{|x|} \ dx$$
$$= \ \frac{1}{2} \ \left [ \ \int_{-\infty}^{0} \ {e^t}^{x} \ e^x \ dx \ + \ \int_0^{\infty} \ {e^t}^{x} \ {e^-}^{x} \ dx \ \right ]$$
$$= \ \frac{1}{2} \ \left [ \ \frac{{e^(}^{1+t)x}}{1+t} |_{-\infty}^{0} \ - \ \frac{{e^-}^{(1-t)x}}{1-t} |_0^{\infty} \ \right ]$$
$$= \ \frac{1}{2} \ \left [ \ \frac{1}{1+t} \ + \ \frac{1}{1-t} \ \right ]$$
$$\therefore \ \ M_x(t) \ = \ \frac{1}{1-t^2}$$
Expanding Mx(t), we get
$$M_x(t) \ = \ {(1-t^2)^-}^{1}$$
$$= \ 1 \ + \ t^2 \ + \ t^4 \ + \ . \ . \ .$$
$$= \ 1 \ + \ 2 \frac{t^2}{2!} \ + \ 4! \frac{t^4}{4!} + \ . \ . \ .$$
$$\therefore \ \mu_r^{'} \ = \ coefficient \ of \ \frac{t^r}{r!} \ in \ M_x(t)$$
Hence, the first four raw moments of the Standard Laplace distribution are:
$$\mu_1^{'} \ = \ 0$$
$$\mu_2^{'} \ = \ 2$$
$$\mu_3^{'} \ = \ 0$$
$$\mu_4^{'} \ = \ 24$$
Characteristic Function of Standard Laplace Distribution
The characteristic function of standard Laplace Distribution is given by
$$\phi x (t) \ = \ E({e^i}^{tx}) \ = \ \int_{-\infty}^{\infty} \ {e^i}^{tx} \ f(x) \ dx$$
$$= \ \frac{1}{2} \ \int_{\infty}^{\infty} \ {e^i}^{tx} \ {e^-}^{|x|} \ dx$$
$$= \ \frac{1}{2} \ \left [ \ \int_{-\infty}^{0} \ {e^i}^{tx} \ e^x \ dx \ + \ \int_0^{\infty} \ {e^i}^{tx} \ {e^-}^{x} \ dx \ \right ]$$
$$\therefore \ \phi x (t) \ = \ \frac{1}{1 + t^2}$$
In order to find the moments, we expand the characteristic function, as
$$\phi x (t) \ = \ \frac{1}{1+t^2} \ = \ {(1+t^2)^-}^{1}$$
$$= \ 1 \ - \ t^2 \ + \ t^4 \ - \ t^6 \ + \ . \ . \ .$$
$$= \ 1 \ + \ (it)^2 \ + \ (it)^4 \ + \ (it)^6 \ + \ . \ . \ .$$
Since the characteristic function has only the terms of even powers of t, all the moments of odd order vavish. So,
$$\mu_1^{'} \ = \ 0$$
$$\mu_2^{'} \ = \ 2$$
$$\mu_3^{'} \ = \ 0$$
$$\mu_4^{'} \ = \ 24$$
Hence, mean = 0 and variance = 2.
Mean Deviation about mean of Laplace Distribution
The mean deviation about mean is given by
$$M.D. \ (0) \ = \ \int_{-\infty}^{\infty} \ |x-0| \ f(x) \ dx$$
$$= \ \frac{1}{2} \ \int_{-\infty}^{\infty} \ |x| \ {e^-}^{|x|} \ dx$$
$$= \ \frac{1}{2} \ \left [ \ \int_{\infty}^{0} \ (-x) \ e^x \ dx \ + \ \int_0^{\infty} x \ {e^-}^{x} \ dx \ \right ] $$
$$= \ \frac{1}{2} \ [ \ 0 + \ 1 \ + \ 1 \ ]$$
$$= \ 1$$
Interquartile Range of Standard Laplace Distribution
The first quartile Q1 is given by
$$\int_{-\infty}^{Q_1} \ f(x) \ dx \ = \ \frac{1}{4}$$
$$\Rightarrow \ \int_{-\infty}^{Q_1} \ \frac{1}{2} \ {e^-}^{|x|} \ dx \ = \ \frac{1}{4}$$
$$\Rightarrow \ \int_{-\infty}^{Q_1} \ e^x \ dx \ = \ \frac{1}{4}$$
$$\Rightarrow \ frac{1}{2} \ \left [ \ e^x \ \right ]_{-\infty}^{Q_1} \ = \ \frac{1}{4}$$
$$\Rightarrow \ \frac{1}{2} \ {e^Q}^{_1} \ = \ \frac{1}{4}$$
$$\therefore \ Q_1 \ = \ - \ log_e \ 2$$
The third Quartile Q3 is given by
$$\int_{-\infty}^{Q_3} \ f(x) \ dx \ = \ \frac{3}{4}$$
$$\Rightarrow \ \int_{-\infty}^{Q_3} \ \frac{1}{2} \ {e^-}^{|x|} \ dx \ = \ \frac{3}{4}$$
$$\Rightarrow \ 1 - \ {e^-}^{Q_3} \ + \ 1 \ = \ frac{3}{2}$$
$$\Rightarrow \ {e^-}^{Q_3} \ = \ \frac{1}{2}$$
$$\therefore \ Q_3 \ = \ log_e \ 2$$
The inter-quartile range of standard Laplace distribution is given by
Q3 - Q2 = loge 2 - (-loge 2)
= 2 loge 2
Bibliography
Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.
Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.
Lesson
continuious probablity distributions
Subject
Statistics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.