Log-Normal Distribution
If a continuous random variable Y = log X follows normal distribution with meanμ and varianceσ2 i.e. if Y = loge X ~ N (μ,σ2), then X = ey is called a log-normal distribution. The log-normal distribution is used in solving the problems of biology, economics, reliability theory etc. For example, the hourly median power of radio signals received and transmitted between two places follows the log-normal distribution. Definition: If loge X ~ N (μ,σ2),then the positive continuous random variable X is said to follow log-normal distribution, log N(μ,σ2), with probability density function (pdf) $$f(x) \ = \ \frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2} \ \ \ ; \ x \ > \ 0.$$ Hereμ and σ2 are two parameters of the log-normal distribution. Ifμ = 0 and σ2 = 1 i.e. if log X ~ N (0, 1) then the random variable X is said to follow standard log-normal distribution, Log N (0, 1), and its probability density function (pdf) is given by $$f(x) \ = \ \frac{1}{x \ \sqrt{2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \ log x \ \right )^2} \ \ \ ; \ x \ > \ 0.$$
Summary
If a continuous random variable Y = log X follows normal distribution with meanμ and varianceσ2 i.e. if Y = loge X ~ N (μ,σ2), then X = ey is called a log-normal distribution. The log-normal distribution is used in solving the problems of biology, economics, reliability theory etc. For example, the hourly median power of radio signals received and transmitted between two places follows the log-normal distribution. Definition: If loge X ~ N (μ,σ2),then the positive continuous random variable X is said to follow log-normal distribution, log N(μ,σ2), with probability density function (pdf) $$f(x) \ = \ \frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2} \ \ \ ; \ x \ > \ 0.$$ Hereμ and σ2 are two parameters of the log-normal distribution. Ifμ = 0 and σ2 = 1 i.e. if log X ~ N (0, 1) then the random variable X is said to follow standard log-normal distribution, Log N (0, 1), and its probability density function (pdf) is given by $$f(x) \ = \ \frac{1}{x \ \sqrt{2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \ log x \ \right )^2} \ \ \ ; \ x \ > \ 0.$$
Things to Remember
-
The moment coefficient of skewness is given by
$$\gamma_1 \ = \ ({e^\sigma}^{2} \ - \ 1)^{\frac{1}{2}} \ ( {e^\sigma}^{2} \ + \ 2 )$$
-
The moment coefficient of kurtosis is given by
$$\gamma_2 \ = \ ({e^\sigma}^{2} \ - \ 1) \ ({e^3}{\sigma^2} \ + \ 3 \ {e^2}^{\sigma^2} \ + \ 6 \ {e^\sigma}^{2} \ + \ 6 \ )$$
- The log-normal distribution is leptokurtic.
- The log-normal distribution is positively skewed.
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Log-Normal Distribution
Log-normal Distribution
If a continuous random variable Y = log X follows normal distribution with meanμ and varianceσ2 i.e. if Y = loge X ~ N (μ,σ2), then X = ey is called a log-normal distribution. The log-normal distribution is used in solving the problems of biology, economics, reliability theory etc. For example, the hourly median power of radio signals received and transmitted between two places follows the log-normal distribution.
Definition:
If loge X ~ N (μ,σ2),then the positive continuous random variable X is said to follow log-normal distribution, log N(μ,σ2), with probability density function (pdf)
$$f(x) \ = \ \frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2} \ \ \ ; \ x \ > \ 0.$$
Hereμ and σ2 are two parameters of the log-normal distribution.
Ifμ = 0 and σ2 = 1 i.e. if log X ~ N (0, 1) then the random variable X is said to follow standard log-normal distribution, Log N (0, 1), and its probability density function (pdf) is given by
$$f(x) \ = \ \frac{1}{x \ \sqrt{2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \ log x \ \right )^2} \ \ \ ; \ x \ > \ 0.$$
Moments of Log-normal Distribution :
Let X ~ log N(μ,σ2). The rth moment about origin of log-normal distribution is given by
$$\mu_r^{'} \ = \ E \ (X^r) \ = \ \int_0^{\infty} \ x^r \ f(x) \ dx$$
$$= \ \int_0^{\infty} \ x^r \\frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2}$$
$$put \ z \ = \ \frac{log x - \mu}{\sigma} \ then \ x \ = \ {e^\mu}^{+ \sigma z} \ so \ that \ dx \ = \ {e^\mu}^{+ \ \sigma z} \ . \ \sigma \ dz$$
$$\therefore \ \mu_r^{'} \ = \ \int_{- \infty}^{\infty} \ {e^(}^{\mu \ + \ \sigma z)r} \ \frac{1}{ \ {e^\mu}^{+ \ \sigma z} \ \sigma \ \sqrt{2\pi}} \ {e^-}^{\frac{1}{2} \ z^2} \ {e^\mu}^{+ \sigma z} \ . \ \sigma \ dz$$
$$= \ \frac{{e^\mu}^{r}}{\sqrt{2\pi}} \ \int_{- \ \infty}^{\infty} \ {e^-}^{\frac{1}{2} \ \left ( z^2 \ - \ 2z \ \sigma r \ \right )} \ dz$$
$$= \ \frac{{e^\mu}^{r} \ {e^\frac{1}{2}}^{\sigma^2 \ r^2}}{\sqrt{2\pi}} \ \int_{-\infty}^{\infty} \ {e^-}^{\frac{1}{2} \ \left ( \ z - \sigma r \ \right )^2} \ dz$$
$$\therefore \ \mu_r^{'} \ = \ {e^\mu}^{r \ + \ \frac{1}{2} \ \sigma^2 \ r^2 }$$
$$When \ r \ = \ 1, \ \ \ \mu_1^{'} \ = \ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ = \ Mean$$
$$When \ r \ = \ 2, \ \ \ \mu_2^{'} \ = \ {e^2}^{\mu \ + \ 2 \ \sigma^2}$$
$$When \ r \ = \ 3, \ \ \ \mu_3^{'} \ = \ {e^3}^{\mu \ + \ \frac{9}{2} \ \sigma^2}$$
$$When \ r \ = \ 4, \ \ \ \mu_4^{'} \ = \ {e^4}^{\mu \ + \ 8 \ \sigma^2}$$
$$ Now, \ the \ Variance \ = \ \mu_2 \ = \ \mu_2^{'} \ - \ (\mu_1^{'})^2$$
$$= \ {e^2}^{\mu \ + \ 2 \ \sigma^2} \ - \ \left ( {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )^2$$
$$= \ {e^2}^{\mu \ + \ 2 \ \sigma^2} \ - \ {e^2}^{\mu \ + \ \sigma^2}$$
$$= \ {e^2}^{\mu \ + \sigma^2} \ \left ( \ {e^\sigma}{^2} \ - \ 1 \ \right )$$
$$\mu_3 \ = \ \mu_3^{'} \ - \ 3 \mu_2^{'} \ \mu_1^{'} \ + \ 2 \ \left ( \ \mu_1^{'} \ \right )^3$$
$$= \ {e^3}^{\mu \ + \ \frac{9}{2} \ \sigma^2} \ - \ 3 \\ {e^2}^{\mu \ + \ 2 \ \sigma^2}\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ + \ 2 \ \left (\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )$$
$$= \ {e^3}^{\mu \ + \ \frac{3}{2} \ \sigma^2} \ \left ( \ {e^\sigma}^{2} \ - 1 \ \right )^2 \ \left ( {e^\sigma}^{2} \ + \ 2 \ \right )$$
$$\mu_4 \ = \ \mu_4^{'} \ - \ 4 \mu_3^{'} \ \mu_1^{'} \ + \ 6 \ \mu_2^{'} \ (\mu_1^{'} )^2 \ - \ 3 \ (\mu_1^{'})^4$$
$$= \ {e^4}^{\mu \ + \ 8 \ \sigma^2} \ - \ 4 {e^3}^{\mu \ + \ \frac{9}{2} \ \sigma^2} \ .\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ + \ 6\ {e^2}^{\mu \ + \ 2 \ \sigma^2} \ \left (\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )^2 \ - \ 3 \ \left (\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )^4$$
$$= \ {e^4}^{\mu \ + \ 2 \sigma^2} \ \left ( \ {e^\sigma}^{2} \ - \ 1 \ \right )^2 \ \left ( \ {e^4}^{\sigma^2} \ + \ 2 \ {e^3}^{\sigma^2} \ + \ 3 \ {e^2}^{\sigma^2} \ - \ 3 \ \right )$$
The moment coefficient of skewness is given by
$$\gamma_1 \ = \ ({e^\sigma}^{2} \ - \ 1)^{\frac{1}{2}} \ ( {e^\sigma}^{2} \ + \ 2 )$$
The moment coefficient of kurtosis is given by
$$\gamma_2 \ = \ ({e^\sigma}^{2} \ - \ 1) \ ({e^3}{\sigma^2} \ + \ 3 \ {e^2}^{\sigma^2} \ + \ 6 \ {e^\sigma}^{2} \ + \ 6 \ )$$
Since,γ1 > 0, the log-normal distribution is positively skewed. Similarly, sinceγ2 > 0, the log-normal distribution is leptokurtic.
Bibliography
Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.
Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.
Lesson
continuious probablity distributions
Subject
Statistics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.