Log-Normal Distribution

If a continuous random variable Y = log X follows normal distribution with meanμ and varianceσ2 i.e. if Y = loge X ~ N (μ,σ2), then X = ey is called a log-normal distribution. The log-normal distribution is used in solving the problems of biology, economics, reliability theory etc. For example, the hourly median power of radio signals received and transmitted between two places follows the log-normal distribution. Definition: If loge X ~ N (μ,σ2),then the positive continuous random variable X is said to follow log-normal distribution, log N(μ,σ2), with probability density function (pdf) $$f(x) \ = \ \frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2} \ \ \ ; \ x \ > \ 0.$$ Hereμ and σ2 are two parameters of the log-normal distribution. Ifμ = 0 and σ2 = 1 i.e. if log X ~ N (0, 1) then the random variable X is said to follow standard log-normal distribution, Log N (0, 1), and its probability density function (pdf) is given by $$f(x) \ = \ \frac{1}{x \ \sqrt{2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \ log x \ \right )^2} \ \ \ ; \ x \ > \ 0.$$

Summary

If a continuous random variable Y = log X follows normal distribution with meanμ and varianceσ2 i.e. if Y = loge X ~ N (μ,σ2), then X = ey is called a log-normal distribution. The log-normal distribution is used in solving the problems of biology, economics, reliability theory etc. For example, the hourly median power of radio signals received and transmitted between two places follows the log-normal distribution. Definition: If loge X ~ N (μ,σ2),then the positive continuous random variable X is said to follow log-normal distribution, log N(μ,σ2), with probability density function (pdf) $$f(x) \ = \ \frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2} \ \ \ ; \ x \ > \ 0.$$ Hereμ and σ2 are two parameters of the log-normal distribution. Ifμ = 0 and σ2 = 1 i.e. if log X ~ N (0, 1) then the random variable X is said to follow standard log-normal distribution, Log N (0, 1), and its probability density function (pdf) is given by $$f(x) \ = \ \frac{1}{x \ \sqrt{2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \ log x \ \right )^2} \ \ \ ; \ x \ > \ 0.$$

Things to Remember

  1. The moment coefficient of skewness is given by

    $$\gamma_1 \ = \ ({e^\sigma}^{2} \ - \ 1)^{\frac{1}{2}} \ ( {e^\sigma}^{2} \ + \ 2 )$$

  2. The moment coefficient of kurtosis is given by

    $$\gamma_2 \ = \ ({e^\sigma}^{2} \ - \ 1) \ ({e^3}{\sigma^2} \ + \ 3 \ {e^2}^{\sigma^2} \ + \ 6 \ {e^\sigma}^{2} \ + \ 6 \ )$$

  3. The log-normal distribution is leptokurtic.
  4.  The log-normal distribution is positively skewed.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Log-Normal Distribution

Log-Normal Distribution

Log-normal Distribution

If a continuous random variable Y = log X follows normal distribution with meanμ and varianceσ2 i.e. if Y = loge X ~ N (μ,σ2), then X = ey is called a log-normal distribution. The log-normal distribution is used in solving the problems of biology, economics, reliability theory etc. For example, the hourly median power of radio signals received and transmitted between two places follows the log-normal distribution.

Definition:

If loge X ~ N (μ,σ2),then the positive continuous random variable X is said to follow log-normal distribution, log N(μ,σ2), with probability density function (pdf)

$$f(x) \ = \ \frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2} \ \ \ ; \ x \ > \ 0.$$

Hereμ and σ2 are two parameters of the log-normal distribution.

Ifμ = 0 and σ2 = 1 i.e. if log X ~ N (0, 1) then the random variable X is said to follow standard log-normal distribution, Log N (0, 1), and its probability density function (pdf) is given by

$$f(x) \ = \ \frac{1}{x \ \sqrt{2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \ log x \ \right )^2} \ \ \ ; \ x \ > \ 0.$$

Moments of Log-normal Distribution :

Let X ~ log N(μ,σ2). The rth moment about origin of log-normal distribution is given by

$$\mu_r^{'} \ = \ E \ (X^r) \ = \ \int_0^{\infty} \ x^r \ f(x) \ dx$$

$$= \ \int_0^{\infty} \ x^r \\frac{1}{x \sigma \ \sqrt{ 2 \pi}} \ {e^-}^{\frac{1}{2} \ \left ( \frac{log x - \ \mu}{\sigma} \ \right )^2}$$

$$put \ z \ = \ \frac{log x - \mu}{\sigma} \ then \ x \ = \ {e^\mu}^{+ \sigma z} \ so \ that \ dx \ = \ {e^\mu}^{+ \ \sigma z} \ . \ \sigma \ dz$$

$$\therefore \ \mu_r^{'} \ = \ \int_{- \infty}^{\infty} \ {e^(}^{\mu \ + \ \sigma z)r} \ \frac{1}{ \ {e^\mu}^{+ \ \sigma z} \ \sigma \ \sqrt{2\pi}} \ {e^-}^{\frac{1}{2} \ z^2} \ {e^\mu}^{+ \sigma z} \ . \ \sigma \ dz$$

$$= \ \frac{{e^\mu}^{r}}{\sqrt{2\pi}} \ \int_{- \ \infty}^{\infty} \ {e^-}^{\frac{1}{2} \ \left ( z^2 \ - \ 2z \ \sigma r \ \right )} \ dz$$

$$= \ \frac{{e^\mu}^{r} \ {e^\frac{1}{2}}^{\sigma^2 \ r^2}}{\sqrt{2\pi}} \ \int_{-\infty}^{\infty} \ {e^-}^{\frac{1}{2} \ \left ( \ z - \sigma r \ \right )^2} \ dz$$

$$\therefore \ \mu_r^{'} \ = \ {e^\mu}^{r \ + \ \frac{1}{2} \ \sigma^2 \ r^2 }$$

$$When \ r \ = \ 1, \ \ \ \mu_1^{'} \ = \ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ = \ Mean$$

$$When \ r \ = \ 2, \ \ \ \mu_2^{'} \ = \ {e^2}^{\mu \ + \ 2 \ \sigma^2}$$

$$When \ r \ = \ 3, \ \ \ \mu_3^{'} \ = \ {e^3}^{\mu \ + \ \frac{9}{2} \ \sigma^2}$$

$$When \ r \ = \ 4, \ \ \ \mu_4^{'} \ = \ {e^4}^{\mu \ + \ 8 \ \sigma^2}$$

$$ Now, \ the \ Variance \ = \ \mu_2 \ = \ \mu_2^{'} \ - \ (\mu_1^{'})^2$$

$$= \ {e^2}^{\mu \ + \ 2 \ \sigma^2} \ - \ \left ( {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )^2$$

$$= \ {e^2}^{\mu \ + \ 2 \ \sigma^2} \ - \ {e^2}^{\mu \ + \ \sigma^2}$$

$$= \ {e^2}^{\mu \ + \sigma^2} \ \left ( \ {e^\sigma}{^2} \ - \ 1 \ \right )$$

$$\mu_3 \ = \ \mu_3^{'} \ - \ 3 \mu_2^{'} \ \mu_1^{'} \ + \ 2 \ \left ( \ \mu_1^{'} \ \right )^3$$

$$= \ {e^3}^{\mu \ + \ \frac{9}{2} \ \sigma^2} \ - \ 3 \\ {e^2}^{\mu \ + \ 2 \ \sigma^2}\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ + \ 2 \ \left (\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )$$

$$= \ {e^3}^{\mu \ + \ \frac{3}{2} \ \sigma^2} \ \left ( \ {e^\sigma}^{2} \ - 1 \ \right )^2 \ \left ( {e^\sigma}^{2} \ + \ 2 \ \right )$$

$$\mu_4 \ = \ \mu_4^{'} \ - \ 4 \mu_3^{'} \ \mu_1^{'} \ + \ 6 \ \mu_2^{'} \ (\mu_1^{'} )^2 \ - \ 3 \ (\mu_1^{'})^4$$

$$= \ {e^4}^{\mu \ + \ 8 \ \sigma^2} \ - \ 4 {e^3}^{\mu \ + \ \frac{9}{2} \ \sigma^2} \ .\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ + \ 6\ {e^2}^{\mu \ + \ 2 \ \sigma^2} \ \left (\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )^2 \ - \ 3 \ \left (\ {e^\mu}^{+ \ \frac{1}{2} \ \sigma^2} \ \right )^4$$

$$= \ {e^4}^{\mu \ + \ 2 \sigma^2} \ \left ( \ {e^\sigma}^{2} \ - \ 1 \ \right )^2 \ \left ( \ {e^4}^{\sigma^2} \ + \ 2 \ {e^3}^{\sigma^2} \ + \ 3 \ {e^2}^{\sigma^2} \ - \ 3 \ \right )$$

The moment coefficient of skewness is given by

$$\gamma_1 \ = \ ({e^\sigma}^{2} \ - \ 1)^{\frac{1}{2}} \ ( {e^\sigma}^{2} \ + \ 2 )$$

The moment coefficient of kurtosis is given by

$$\gamma_2 \ = \ ({e^\sigma}^{2} \ - \ 1) \ ({e^3}{\sigma^2} \ + \ 3 \ {e^2}^{\sigma^2} \ + \ 6 \ {e^\sigma}^{2} \ + \ 6 \ )$$

Since,γ1 > 0, the log-normal distribution is positively skewed. Similarly, sinceγ2 > 0, the log-normal distribution is leptokurtic.

Bibliography

Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.

Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.

Lesson

continuious probablity distributions

Subject

Statistics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.