Gamma Distribution
A random variable (r.v) X having a probability density function (pdf) $$f(x) \ = \ f(x; \alpha) \ = \ \frac{ {e^-}^{x} \ {x^\alpha}^{-1}}{\Gamma\alpha} \ \ \ \ \ ;0 \ < \ x \ < \infty, \ \alpha \ < \ 0.$$ otherwise 0. is said to have a gamma distribution with one parameter α.It is important to note that for a one parameter gamma distribution G(α), the mean and variance are equal toα, like in the Poisson distribution. That is Mean = Variance =α.
Summary
A random variable (r.v) X having a probability density function (pdf) $$f(x) \ = \ f(x; \alpha) \ = \ \frac{ {e^-}^{x} \ {x^\alpha}^{-1}}{\Gamma\alpha} \ \ \ \ \ ;0 \ < \ x \ < \infty, \ \alpha \ < \ 0.$$ otherwise 0. is said to have a gamma distribution with one parameter α.It is important to note that for a one parameter gamma distribution G(α), the mean and variance are equal toα, like in the Poisson distribution. That is Mean = Variance =α.
Things to Remember
-
$$ \Gamma(1) \ = \ \int_{0}^{\infty} \ {e^-}^{x} \ dx \ = \ 1$$
-
$$ \Gamma(n) \ = \ (n - 1) \ \Gamma(n - 1)$$
- $$ \Gamma(n) \ = \ (n-1) \ ! \ for \ positive \ integral \ n.$$
- for Gamma distribution, Mean = Variance =α.
MCQs
No MCQs found.
Subjective Questions
Q1:
Which food provides energy to the people?
Type: Very_short Difficulty: Easy
Q2:
What are Nutrients?
Type: Very_short Difficulty: Easy
Q3:
What will happen without nutrition?
Type: Very_short Difficulty: Easy
Q4:
What is a Junk food?
Type: Very_short Difficulty: Easy
Q5:
What do Junk foods will do?
Type: Very_short Difficulty: Easy
Q6:
List the food nutrients.
Type: Short Difficulty: Easy
<tbody>
<tr>
<td>S.N</td>
<td>Groups of nutrients</td>
<td>Nutrients</td>
<td>Food source</td>
</tr>
<tr>
<td>1.</td>
<td>Energy- giving food</td>
<td>Carbohydrates and Fat</td>
<td>Sweet potato, molasses, potato, Rice, ghee, cheese, butter etc.</td>
</tr>
<tr>
<td>2.</td>
<td>Body building food</td>
<td>Protein and minerals</td>
<td>Soyabean, eggs, milk, milk products, meat, peas, fish, Gram etc.</td>
</tr>
<tr>
<td>3.</td>
<td>Food that protects and regulates the body systems</td>
<td>Vitamins and Water</td>
<td>green leafy vegetables, banana, sea foods, onion, lemon, Apple, mango etc.</td>
</tr>
</tbody>
</table>
<p> </p>
Q7:
Write about the importance of Nutrition?
Type: Long Difficulty: Easy
<p>a. Nutrition helps in replacing the worn out tissues and maintain growth and development by generating new tissues and cells.</p>
<p>b. It helps in maintaining hormonal balance in the body and helps in regulating the body systems.</p>
<p>c. It helps to receive energy for doing different activities.</p>
<p>d. Nutrition helps to develop the immunity power of the body. It prevents against harmful germs and save us from infections.</p>
<p>e. It develops a good presence of mind and helps in mental development.</p>
Q8:
Write the importance of the proper balanced diet?
Type: Short Difficulty: Easy
Q9:
Why do people eat junk food, although it is harmful for health?
Type: Short Difficulty: Easy
Videos
No videos found.

Gamma Distribution
Before discussing the gamma distribution, we first define the gamma distribution and state some properties of the gamma function, for the sake of completeness.
The gamma function (or factorial function ) with parameter n denoted byΓn is defined as
$$\Gamma(n) \ = \ \int_{0}^{\infty} \ {e^-}^{x} \ {x^n}^{-1} \ d(x) \ \ \ \ \ \ ; \ n \ > \ 0.$$
This integral is an improper integral which converges for n > 0.
The gamma function has the following properties:
$$1.\ \ \Gamma(1) \ = \ \int_{0}^{\infty} \ {e^-}^{x} \ dx \ = \ 1$$
$$2. \ \ \Gamma(n) \ = \ (n - 1) \ \Gamma(n - 1)$$
proof:
$$\Gamma(n) \ = \ {e^-}^{x} \ {x^n}^{-1} \ d(x)$$
Integrating by parts,
$$= \ n-1 \ \int_{0}^{\infty} \ {e^-}^{x} \ dx \ - \ \int_{0}^{\infty} \ \left [ \ (n-1) \ {x^n}^{-2} \ \int_{0}^{\infty} \ {e^-}^{x} \ dx \ \right ] \ dx$$
$$= \ {e^-}{^x} \ {x^n}^{-1} \mid |_{0}^{\infty} \ + \ (n-1) \ \int_{0}^{\infty} \ {e^-}^{x} \ \ {x^(}^{n-1)-1} \ dx$$
$$= \ (n-1) \ \Gamma(n-1)$$
$$3. \ \ \Gamma(n) \ = \ (n-1) \ ! \ for \ positive \ integral \ n.$$
proof:
We have,
$$\Gamma(n) \ = \ (n-1) \ \Gamma(n-1)$$
$$ = \ (n-1) \ (n-2) \ \Gamma(n-2)$$
$$= \ (n-1) \ (n-2) \ ... \ 2. \ 1. \ \Gamma1$$
$$= \ (n-1) \ (n-2) \ ... \ 2. \ 1.$$
$$ = \ (n-1)!$$
$$Since \Gamma(1) \ = \ 1, \ then \ 0! \ = 1.$$
Gamma distribution is one of the continious probability distribution of non-negative random variables.
Defination:
A random variable (r.v) X having a probability density function (pdf)
$$f(x) \ = \ f(x; \alpha) \ = \ \frac{ {e^-}^{x} \ {x^\alpha}^{-1}}{\Gamma\alpha} \ \ \ \ \ ;0 \ < \ x \ < \infty, \ \alpha \ < \ 0.$$
otherwise 0.
is said to have a gamma distribution with one parameter α.
If a random variable X follows a gamma distribution with parameterα, we write X ~ gamma (α ) or simply X ~ G(α. ) orγ(α ).
It can easily be proved that, the function f(x) is a probability density function (pdf), since,
$$\int_{0}^{\infty} \ f(x) \ dx \ = \ \frac{1}{\Gamma\alpha} \ \int_{0}^{\infty} \ {e^-}^{x} \ {x^\alpha}^{-1} \ dx$$
$$= \ \frac{1}{\Gamma\alpha} \ . \ \Gamma\alpha$$
$$= \ 1$$
The gamma distribution is positively skewed. The graph of gamma distribution depends upon the values of the parameterα. The gamma curves for different values ofα i.e.α = 1, α = 2 andα = 5 are shown in the figure below.
TRUE) plot(function(x) {dlnorm(x, meanlog=1)}, 0, 10, col="blue", add=TRUE) legend(x = "topright", legend = c("mu = 0", "mu = 0.5", "mu = 1"), lty = c(1, 1, 1), col = c("black", "red", "blue"))
Figure: Gamma curve
The distribution function of one parameter gamma distribution is given by
$$F(x) \ = \ \int_{0}^{x} \ f(u) \ du$$
$$= \ \frac{1}{\Gamma\alpha} \ \int_{0}^{x} \ {e^-}^{u} \ {u^\alpha}^{-1} \ du \ \ \ \ ; \ u \ > \ 0.$$
$$ = \ 0 \ \ \ \ \ \ \ \ \ \ ; \ otherwise$$
This F(x) is called incomplete gamma function.
Remark 1:
A continuous random variable X is said to have a gamma distribution with two parametersα andβ if its probability density function (pdf) is
$$f(x) \ = \ f(x; \alpha, \beta) \ = \ \frac{\beta^\alpha}{\Gamma\alpha} \ {e^-}^{\beta \alpha} \ {x^\alpha}^{-1} \ \ \ \ ; \ 0 \ < \ x \ < \ \infty, \ \alpha \ > \ 0, \ \beta \ > \ 0$$
$$= \ 0 \ ; \ otherwise$$
Another form of two parameter gamma distribution is given by the probability density function
$$f(x) \ = \ f \left ( x; \ \alpha, \ \beta \ = \ \frac{1}{\theta} \right ) \ = \\frac{{e^-}^{\frac{x}{\theta}} {x^\alpha}^{-1}}{\theta^\alpha \ \Gamma\alpha}$$
$$Here, \ X \ ~ \ G(\alpha, \ \beta). \ If \ \beta \ = \ 1 \ or \ \theta \ = \ 1, \ then \ X \ ~ \ G(\alpha, \ 1) \ = \ G(\alpha).$$
Remark 2:
Ifα = 1 in G(α, β) then the gamma distribution reduces to an exponential distribution with parameterβ.
Moments of Gamma Distribution
Let X ~ G(α) i.e. X follosw a gamma distribution with the parameterα. The rth moment about origin of gamma distribution is given by
$$\mu_{r}^{'} \ = \ E(X^r) $$
$$ = \ \int_{0}^{\infty} \ f(x) \ dx$$
$$= \ \int_{0}^{\infty} \ x^r \ \frac{{e^-}^{x} \ {x^\alpha}^{-1}}{\Gamma\alpha} \ dx$$
$$= \ \frac{1}{\Gamma\alpha} \ \int_{0}^{\infty} \ {e^-}^{x} \ {x^(}^{\alpha + r)-1} \ dx$$
$$= \ \frac{\Gamma(\alpha + r)}{\Gamma\alpha} \ \ \ \ ; \ r \ = 1, \ 2, \ 3, \ 4$$
Therefore,
$$\mu_{1}^{'} \ = \ \alpha \ = \ mean$$
$$\mu_{2}^{'} \ = \ \alpha(\alpha+1)$$
$$\mu_{3}^{'} \ = \ \alpha(\alpha+1) \ (\alpha+2)$$
$$\mu_{4}^{'} \ = \ \alpha(\alpha+1) \ (\alpha+2) \ (\alpha+3)$$
Similarly, the first four moments about mean of the gamma distribution are obtained as follows:
$$\mu_1 \ = \ 0$$
$$\mu_{2} \ = \ \mu_{2}^{'} - (\mu_{1}^{'})^2$$
$$=\ \alpha(\alpha+1)\ -\ (\alpha)^2 \ = \ \alpha \ = \ Variance$$
$$\mu_{3} \ = \ \mu_{3}^{'} \ - \ 3\mu_{2}^{'} \mu_{1}^{'} \ + \ 2(\mu_{1}^{'})^3$$
$$= \\alpha(\alpha+1) \ (\alpha+2) \ - \ 3\ \alpha(\alpha+1) \ \alpha \ + \ 2 \ \alpha^3 \ = \ 2 \alpha$$
$$\mu_{4} \ = \ \mu_{4}^{'} \ - \ 4\mu_{3}^{'} \ \mu_{1}^{'} \ + \ 6 \ \mu_{2}^{'} \ (\mu_{1}^{'})^2 \ - \ 3 \ (\mu_{1}^{'})^4$$
$$= \ \alpha(\alpha+1) \ (\alpha+2) \ (\alpha+3) \ - 4\ \alpha(\alpha+1) \ (\alpha+2) \ \alpha \ + \ 6 \\alpha(\alpha+1) \ (\alpha)^2 \ - \ 3 (\alpha)^4$$
$$= \ 3 \ (\alpha)^2 \ + \ 6 \ \alpha$$
It is important to note that for a one parameter gamma distribution G(α), the mean and variance are equal toα, like in the Poisson distribution. That is
Mean = Variance =α.
Bibliography
Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.
Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.
Lesson
continuious probablity distributions
Subject
Statistics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.