Characteristic Function Of Cauchy Distribution

Then the characteristic function of Cauchy distribution X is given by Φx(t) = E [eitX] = E [eit(μ+λz)] = eitμ E (eitλz) = eitμΦz(tλ) =eitμ .e-|tλ| ∴Φx(t) =eitμ-λ|t| ;λ > 0

Summary

Then the characteristic function of Cauchy distribution X is given by Φx(t) = E [eitX] = E [eit(μ+λz)] = eitμ E (eitλz) = eitμΦz(tλ) =eitμ .e-|tλ| ∴Φx(t) =eitμ-λ|t| ;λ > 0

Things to Remember

  1. Then the characteristic function of Cauchy distribution X is given by

    Φx(t) = E [eitX]

    = E [eit(μ+λz)]

    = eitμ E (eitλz)

    = eitμΦz(tλ)

    =eitμ .e-|tλ|

    ∴Φx(t) =eitμ-λ|t| ;λ > 0

  2. Cauchy distribution follows additive property

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Characteristic Function Of Cauchy Distribution

Characteristic Function Of Cauchy Distribution

Let X follows a Cauchy distribution with a parameterμ andλ i.e. X ~ (μ,λ ). To find the characteristic function of X, we first find the characteristic function of the stsndard Cauchy variate

$$Z \ = \ \frac{X \ - \ \mu}{\lambda}$$

The probability function of Z is given by

$$f(x) \ = \ \frac{1}{\pi} \ . \ \frac{1}{1+z^2} \ \ \ \ ; \ -\infty \ < \ z \ < \ \infty$$

The characteristic function of Z is given by

$$\phi_{z}(t) \ = \ E({e^i}^{tz})$$

$$= \ \int_{-\infty}^{\infty}\ {e^i}^{tz} \ f(z) \ dz$$

$$= \ \frac{1}{\pi} \ \int_{-\infty}^{\infty}\ \frac{1}{1+z^2} \ dz$$

To find Φz(t), we consider stsndard Laplace distribution given by the probability density function

$$f_1(z) \ = \ \frac{1}{2} \ {e^-}^{|z|}, \ \ \ \; \ -\infty \ < \ z \ < \ \infty$$

Then, the characteristic function of the standard Laplace variable is given by

$$\phi_1 (t) \ = \ \frac{1}{2} \ \int_{-\infty}^{\infty} \ {e^i}^{tz} \ {e^-}^{|z|} \ dz$$

$$= \\frac{1}{2} \ \int_{-\infty}^{\infty} \ (Coz \ tz \ + \ i \ sin \ tz) \ {e^-}^{|z|} \ dz$$\

$$ = \ \frac{1}{2} \ \int_{-\infty}^{\infty} \ Coz \ tz \ . \ {e^-}^{|z|} \ dz \ \ \ \ \ \ \ \ \ [\therefore \ The \ second \ integral \ being \ an \ odd \ function \ vanishes]$$

$$= \ \int_{o}^{\infty} \ Cos \ tz \ . \ {e^-}^{|z|} \ dz$$

Integrating by parts, we get,

$$ = \ \left [ \ -Cos \ tz \ . \ {e^-}^{z} \ \right ]_{0}^{\infty} \ -t \int_{o}^{\infty} \ sin \ tz \ . \ {e^-}^{z} \ dz$$

$$= \ 1 \ - \ t \ \int_{o}^{\infty} \ sin \ tz \ . \ {e^-}^{z} \ dz$$

$$ \ = \ 1 \ - \ t \ \left [ -{e^-}^{z} \ sin \ tz \ \mid_{0}^{\infty} \ + \ t \ \int_{0}^{\infty} \ coz \ tz \ {e^-}^{z} \ dz \ \right ]$$

$$= \ 1 \ - \ t^2 \ \int_{0}^{\infty} \ coz \ tz \ {e^-}^{z} \ dz$$

$$\therefore \int_{0}^{\infty} \ coz \ tz \ {e^-}^{z} \ dz = \ 1 \ - \ t^2 \ \int_{0}^{\infty} \ coz \ tz \ {e^-}^{z} \ dz$$

$$\Rightarrow \ \int_{0}^{\infty} \ coz \ tz \ {e^-}^{z} \ dz \ = \ \frac{1}{1 + t^2}$$

$$Hence, \phi_1(t) \ =\ \frac{1}{1 + t^2}.$$

This characteristic functionΦ1(t) is absolutely integral in (-∞,∞). Thus, by inversion theorem, the corresponding density function is

$$f_1 \ (z) \ = \ \frac{1}{2 \pi} \ \int_{-\infty}^{\infty} \ {e^-}^{itz} \ \phi_1 (t) \ dt$$

$$ or, \ \ \ \frac{1}{2} \ {e^-}^{|z|} \ = \ \frac{1}{2 \pi} \ \int_{-\infty}^{\infty} \ {e^-}^{itz} \ \frac{1}{1+t^2} \ dt$$

$$ or, \ \ \ {e^-}^{|z|} \ = \ \frac{1}{\pi} \ \int_{-\infty}^{\infty} \ \frac{{e^-}^{itz}}{1+t^2} \ dt \ \ \ \left [ \ \therefore \ Changing \ t \ to \ -t \ which \ does \not \ affect \ the \ value \ of \ the \ integral \ \right ]$$

On changing t and z, we get

$${e^-}^{|t|} \ = \ \frac{1}{\pi} \ \int_{-\infty}^{\infty} \ \frac{{e^-}^{itz}}{1+t^2} \ dz$$

$$ = \ \phi_z (t)$$

Hence, the characteristic function of standard Cauchy variate Z is

$$ \phi_z (t) \ = \ {e^-}^{|t|}$$

Then the characteristic function of Cauchy distribution X is given by

Φx(t) = E [eitX]

= E [eit(μ+λz)]

= eitμ E (eitλz)

= eitμΦz(tλ)

=eitμ .e-|tλ|

∴Φx(t) =eitμ-λ|t| ;λ > 0

Further, since |t| is not differentiable at t = 0, theΦx(t) is not differentiable at t = 0. Since rth moment of X is given by

$$\mu_{r}^{'} \ = \ \frac{1}{i^r} \ \left [ \frac{d^r \ \phi_x(t)}{dt^r} \ \right ]_{t=0}\ = \ \frac{\phi_x(0)}{i^r}$$

the moments of any ordher do not exist. Hence the mean and variance of Cauchy distribution do not exist. This property is a very peculiar one which is not found in other distributions discussed so far.

Additive Property of Cauchy Distribution

If X1 and X2 are two independent Cauchy varaites with parameters (μ11) and (μ22) respectively, then X1 + X2 is a Cauchy variate with parameters (μ1212)

proof:

We have the characteristic function of X1 and X2 are given by

Φx1 (t) = eitμ1 -λ1 |t|

and Φx2(t) = eitμ2 -λ2 |t|

Since X1 and X2 are independent, the characteristic function of X1 + X2 is given by

Φx1 + x2 (t) =Φx1 (t) .Φx2(t)

∴Φx1 + x2 (t) = eit(μ12) - (λ1 +λ2) |t|

which is the characteristic function of a Cauchy function of a Cauchy random variable with parameter(μ1212). Hence by uniqueness theorem of characteristic functionX1 + X2~(μ1212). Thus the Cauchy distribution follows additive property.

Bibliography

Sukubhattu N.P. (2013). Probability & Inference - II. Asmita Books Publishers & Distributors (P) Ltd., Kathmandu.

Larson H.J. Introduction to Probability Theory and Statistical Inference. WileyInternational, New York.

Lesson

continuious probablity distributions

Subject

Statistics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.