Pairwise and Mutually Independent Events,

This note provides us the information about Pairwise and mutually independent events and their applications.

Summary

This note provides us the information about Pairwise and mutually independent events and their applications.

Things to Remember

$$P(A \cap B)=P(A).P(B)$$

$$P(B \cap C)=P(B).P(C)$$

$$P(A \cap C)=P(A).P(C)$$

$$ and \; \; P(A \cap B \cap C)=P(A).P(B).P(C)$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Pairwise and Mutually Independent Events,

Pairwise and Mutually Independent Events,

Pairwise and Mutually Independent Events

Pairwise Independent Events

Let A,B and C be three events in a sample space S, then these events are said to be pairwise independent if every pair of two events is independent i.e. if and only if

$$P(A \cap B)=P(A).P(B)$$

$$P(B \cap C)=P(B).P(C)$$

$$P(A \cap C)=P(A).P(C)$$

Difinition:The events \(A_1,A_2,.........,A_n\) are said to be pairwise independent if and only if

$$P(A_i \cap A_j)=P(A_i)P(A_j) \; \; \; \; \; for \; \; all \; \; i \neq j=1,2,.....,n$$

$$provided \; \; that \; \; P(A_i)> 0 \; \; \; \; ;i=1,2,....,n$$

Mutually Independent Events

Difinition: The three A, B and C are said to be mutually independent if they are independent by pairs and by triplets. i.e if and only if

$$P(A \cap B)=P(A).P(B)$$

$$P(B \cap C)=P(B).P(C)$$

$$P(A \cap C)=P(A).P(C)$$

$$ and \; \; P(A \cap B \cap C)=P(A).P(B).P(C)$$

$$Provided \; \; that \; \; P(A)> 0,P(B)> 0 \; and \; P(C)> 0 .$$

This difinition can also be generalized to n events \(A_1,A_2,....A_n\).

Theorem 17.

For any two events A and B so that P(A)> 0 and P(B)> 0,

$$P(A)=P(B)P(\frac {A}{B})+P(\bar B)P(\frac {A}{\bar B})$$

Proof: By multiplication theorem of probability ,we have,

$$P(A \cap B)=P(B).P(\frac{A}{B})$$

$$P(A \cap \bar B)=P(\bar B).P(\frac{A}{\bar B})$$

Again, we have

$$ A=(A \cap \bar B) \cup (A \cap B)$$

$$ \therefore P(A)=P[(A \cap \bar B) \cup (A \cap B)]$$

$$=P(A \cap \bar B)+P(A \cap B)$$

$$=P(\bar B).P(\frac {A}{\bar B})+P(B).P(\frac {A}{B})$$

Theorem 18

If A ,B and C are mutually independent events, then \(A \cup B\) and C are also independent.

Proof:Here,we have to prove

$$P[(A \cup B) \cap C]=P(A \cap B).P(C)$$

$$Now, \; P[(A \cup B) \cap C]=P[(A \cap C) \cup :(B \cap C)] \; \; \; (using \; \; distributive \; \; law)$$

$$=P(A \cap C)+P(B \cap C)-P(A\cap B \cap C)$$

$$=P(A).P(C)+P(B).P(C)-P(A).P(B).P(C) \; \; \; \; [\therefore A,B \; and \; C \; are \; mutually \; independent]$$

$$=P(C).[P(A)+P(B)-P(A \cap B)]$$

$$=P(C).P(A \cup B)$$

Hence \(A \cup B\) and C are independent.

Theorem 19

If an event A is independent of the events B,\(B \cup C\) and \(B \cap C\),then it is also independent of C.

Proof: Given that ,

$$P(A \cap B)=P(A).P(B) \; \; \; \; \; \; \; ................(i)$$

$$P(A \cap B \cap C)=P(A).P(B \cup C)\; \; \; \; \; \; \; ................(ii)$$

$$P(A \cap B \cap C)=P(A).P(B \cap )\; \; \; \; \; \; \; ................(iii)$$

$$Also, \; \; P[A \cap (B \cup C)]=P(A).[P(B)+P(C)-P(B \cap )]$$

$$=P(A).P(B)+P(A).P(C)-P(A)P(B \cap C)$$

$$=P(A \cap B)+P(A)P(C)-P[A \cap (B \cap C)]\; \; \; \; \; \; \; ................(iv) [Using \; \; (i) \; \; and \; \; (ii)$$

$$Again,P[A \cap (B \cup C)]=P[(A \cap B) \cup (A \cap C)]$$

$$=P(A \cup B)+P(A)P(C)-P[(A \cap B) \cap P(A \cap C)$$

$$=P(A \cup B)+p(A \cap C)-P[A \cap (B \cap C)]\; \; \; \; \; \; \; ................(v)$$

$$From \; \; (iv) \; \; and \; \; (V), \; \; we \; \; get $$

$$P(A \cap C )=P(A).P(C)$$

$$ Hence, \; \; A \; \; and \; \; C \; \; are \; \; independent \; \; events.$$

Theorem 20

If A, B and C are random events in a sample space and if A,B and C are pairwise independent and A is independent o \(B \cup C\), then A, B and C are mutually independent.

Proof: Given,

$$P(A \cap B)=P(A).P(B)$$

$$P(B \cap C)=P(B).P(C)$$

$$P(A \cap C)=P(A).P(C)$$

$$ and \; \; P[A \cap (B \cup C)]=P(A).P(B).P(C)$$

$$Now,P[A \cap (B \cup C)]=P[(A \cap B) \cup (A \cap C)]$$

$$=P(A \cap B)+ P(A \cap C)-p[(A \cap B) \cap (A \cap C)]$$

$$=P(A).P(B)+P(A).P(C)P(A \cap B \cap C) \; \; \; from (i) \; \; \; \; .......(ii)$$

$$ and\; \; \; P(A).P(B \cup C)=P(A)[P(B)+P(C)-P(B \cap C)]$$

$$ =P(A).P(B)+P(A).P(C)-P(A)P(B \cap C) \; \; \; \; \; \; ......(iii)$$

$$ Equating \; \; (ii) \; \; and \; \; (iii) \; \; on \; \; using\; \; (i) \; \;, we \; \; get$$

$$P(A).P(B)+P(A).P(C)-P(A \cap B \cap C)=P(A)P(B)+P(A).P(C)-P(A)P(B \cap C)$$

$$ \Rightarrow \; \; \; P(A \cap B \cap C)=P(A).P(B \cap C)=P(A).P(B).P(C)$$

$$Hence, A,B \; \; and \; \; C \; \; are \; \; mutually \; \; independent.$$

Examples:

1) Two fair coins are tossed simultaneously.Find the probability of occurrence of (i) head on the first coin and tail on the second coin. (ii) head and tail alternately.

Solution

In a random experiment of tossiing two coins,the sample space is

$$S={HH,HT,TH,TT} \; \; \; \; \; \therefore n(S)=4$$

Let A be event of occurring head on the first coin and B be the event of occurring tail on the second coin.

$$Then \; A={HH,HT} \; \; \; \; \therefore n(A)=2$$

$$B={HT,TT} \; \; \; \; n(B)=2$$

$$P(A)=\frac{n(A)}{n(S)}=\frac{2}{4}=\frac{1}{2} \; \; \; and \; \; \; P(B)=\frac{2}{4}=\frac{1}{2}$$

Since one outcome HT is common to both A and B, i.e. \(A \cap B\)={HT}, then

$$P(A \cap B)=\frac{1}{4}$$

$$As, P(A).P(B)= \frac {1}{2} \times \frac{1}{2}=\frac {1}{4} \; \; \; we \; \; get$$

$$P(A \cap B)=P(A).P(B)=\frac{1}{4}$$

$$Hence \; \; two \; \; events \;\; A \; \; and \; \; B \; \; are \; \; independent$$

\(\therefore \) The required probability is given by multiplication theorem of probability as

$$P(A \cap B)=P(A).P(B)=\frac {1}{2} \times \frac{1}{2} =\frac{1}{4}$$

ii) Let E=event of getting head and tail alternately .Then E can happen in either of the following two mutually exclusive events:

$$E_1={HT} \Rightarrow P(E_1)=\frac{1}{4} \; \; and\; \; E_2={TH} \Rightarrow P(E_2)=\frac {1}{4}$$

$$ \therefore P(Head \; and \; tail \; alternately ) \; is \; given \; by$$

$$P(E)=P(E_1 \cup E_2)=P(E_1)+P(E_2)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$$

2) An urn contains 4 White and 3 red marbles.Four marbles are drawn one after another from the urn.What is the probability that first marble will be white ,the second red,the third white and the fourth a red one?

Solution

Let A,B,C and D denote the event that the first marble drawn is white ,the second is red ,the third is white and the fourth is red respectively.

Case (i) : Withe replacement:

In this case, the four events A,B,C and D are independent.Thus,

$$P(A)=\frac {4}{7},\; \; P(B)=\frac{3}{7}, \; \; \; P(C)=\frac{4}{7} \; \; and \; \; P(D)=\frac{3}{7}$$

$$Therefore, \; the \; required \; probability \; is \; given \; by $$

$$P(A \cap B \cap C \cap D)=P(A).P(B).P(C).P(D)$$

$$=\frac{4}{7} \times \frac{3}{7} \times \frac{4}{7} \times \frac{3}{7} =\frac{144}{2401}$$

Case (ii) : without replacement:

In this case, the event B is dependent on event A ,event C is dependent on the previous events A and B and event D is dependent on the previous events A,B and C.Then,

$$P(A)=\frac {4}{7}, \; \; \; P(\frac {B}{A})=\frac{3}{6},\; \; \; P(\frac{C}{A \cap B})=\frac{3}{5} \; \; and \; \; \; P(\frac {D}{A \cap B \cap C})=\frac{2}{4}$$

$$ Therefore, \; the \; required \; probability \; is \; given \; by $$

$$P(A \cap B \cap C \cap D)=P(A).P(\frac {B}{A} ).P(\frac {C}{A \cap B}).P(\frac{D}{A \cap B \cap C})$$

$$=\frac {4}{7} \times\frac {3}{6} \times\frac {3}{5} \times\frac {2}{4}=\frac{3}{35}$$

References

Sukubhattu,Narendra Prasad. Probability and Inference-I. Asmita Books Publishers & Distributors (P)Ltd. 2013

Lesson

Introduction to Probability

Subject

Statistics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.