Uniform or Rectangular Distribution
Summary
Things to Remember
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Uniform or Rectangular Distribution
Introduction
If a random variable x assumes n discrete values x1, x2, x3, ... , xneach with an equal probability 1\n, then the distribution of X is called an uniform distribution. For example, let us consider an random experiment of throwing a balanced die and let X be the number of points obtained on face of the die. Then X assume the different values 1, 2, 3, 4, 5 and 6 and the different values of the random variable X are equally likely i.e.$$ the \ random \ variable \ X \ assumes \ each \ of \ its \ values \ 1, \ 2, \ 3, \ 4, \ 5 \ and \ 6 \ with \ an \ equal \ probability \ \frac{1}{6}.$$ Thus, the distribution of X is
x | 1 | 2 | 3 | 4 | 5 | 6 |
p(x) | $$\frac{1}{6}$$ | $$\frac{1}{6}$$ | $$\frac{1}{6}$$ | $$\frac{1}{6}$$ | $$\frac{1}{6}$$ | $$\frac{1}{6}$$ |
which is called a uniform distribution. The graph of the probability function p(x) shows the uniform or equal height for all the values of the random variable X as shown in the uniform or equal height for all the values of the random variable X as shown in the figure given below
www.a-levelmathstutor.com
Figure : Graph of uniform distribution
Since the graph of p(x) fits into a rectangle, the uniform distribution is also called a rectangular distribution.
Definition
A random variable X is said to follow a uniform or rectangular distribution over the range [1, n], if its probability mass function is given by
$$ P ( X = x ) \ = \ p(x) \ = \ \frac{1}{n} \ \ \ \ \ \ ; \ x \ = 1, \ 2, \ 3, \ ..., \ n$$
other wise 0.
Here, n is called the parameter of the discrete uniform distribution. We shall use the notation X ~ U (x ; n) or R (x ; n) to denote the random variable X follows uniform or rectangular distribution with parameter n.
Moments of Uniform or Rectangular Distribution
Suppose a random variable X has a uniform distribution defined over the range [1, n] i.e. X ~ U (x ; n). Then the mean of the distribution is given by
$$\mu_{1}^{'} \ = \ E(X) \ = \ \sum_{x=0}^{n} \ x \ p(x)$$
$$= \ \sum_{x=1}^{n} \ x \ \frac{1}{n}$$
$$= \ \frac{1}{n} \ \sum_{x=1}^{n} \ x$$
$$= \ \frac{1}{n} [1 + 2 + ... + n]$$
$$= \ \frac{n (n+1)}{2n}$$
$$= \ \frac{n + 1}{2}$$
Similarly,
$$\mu_{2}^{'} \ = \ E(X^2) \ = \ \sum_{x=1}^{n} \ x^2 \ p(x)$$
$$= \ \sum_{x=1}^{n} \ x^2 \ \frac{1}{n}$$
$$= \ \frac{1}{n} \ \sum_{x=1}^{n} \ x^2$$
$$= \ \frac{1}{n} [1^2 + 2^2 + ... + n^2]$$
$$= \ \frac{ n (n+1) (2n + 1)}{6n}$$
$$= \ \frac{(n+1) (2n + 1)}{6}$$
$$\therefore \ The \ variance \ of \ the \ distribution \ is$$
V(x) = E(X2) - [E(X)]2
$$= \ \frac{(n+1) (2n + 1)}{6} \ - \left ( \frac{n+1}{2} \right )^2$$
$$= \ \frac{(n+1) (n-1)}{12}$$
$$= \ \frac{n^2 - 1}{12}$$
Moment Generating Function of Uniform Distribution
Let X ~ U(x; n). Then the moment generating function of the uniform or rectangular distribution is given by
$$ M_x(t) \ = \ E (e^{tx}) \ = \ \sum_{x=1}^{n} \ e^{tx} p(x)$$
$$ =\ \sum_{x=1}^{n} \ e^{tx} \frac{1}{n}$$
$$= \ \frac{1}{n}\ \sum_{x=1}^{n} \ e^{tx}$$
$$= \ \frac{1}{n} [e^t + e^{2t} + ... + e^{nt}]$$
$$\therefore \ M_x(t) \ = \ \frac{e^t (1-e^{nt})}{n (1-e^t)}$$
Also, the moments about origin of distributioncan be obtained by
$$\mu_{r}^{'} \ = \ \frac{d^r M_x(t)}{dt^r} |_{t = 0}$$
In partical
$$\mu_{1}^{'} \ = \ \frac{d M_x(t)}{dt} |_{t = 0}$$
$$= \ \frac{d}{dt} \left ( \frac{e^t + e^{2t} + ... + e^{nt}}{n} \right )|_{t=0}$$
$$= \ \frac{1}{n} \ [e^t + e^{2t} + ... + e^{nt}] \ |_{t=0}$$
$$= \ \frac{1}{n} \ {1 + 2 + ... + n}$$
$$= \ \frac{n+2}{2}$$
Similarly,
$$\mu_{2}^{'} \ = \ \frac{1}{n} \ [1^2 + 2^2 + ... + n^2]$$
$$= \ \frac{(n+1) (2n+1)}{6}$$
$$\therefore \ V(X) \ = \ \mu_{2}^{'} \ - \ (\mu_{1}^{'})^2$$
$$= \ \frac{(n+1) (2n+1)}{6} \ - \left ( \frac{n+1}{2} \right )^2$$
$$= \ \frac{n^2 - 1}{12}$$
Recurrence Relation of Uniform Distribution
Let X ~ U (x ; n ) then the probability mass function of X is given by
$$p(x) \ = \ \frac{1}{n} \ \ \ \ ;x \ = \ 1, \ 2, \ ..., \ n$$
$$and \ p(x+1) \ = \ \frac{1}{n}$$
$$\rightarrow \ p(x+1) \ = \ p(x) \ \ \ \ ; \ for \ all \ x \ = \ 1, \ 2, \ ..., \ n$$
Lesson
Discrete probability distribution
Subject
Statistics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.