Numerical related to estimation of true score

For the estimation of true score. $$T=r×O+(1-r)\overline{X}$$ $$where\,r=reliability\,coefficient$$ $$C.I=\overline{X}±t_a/_2S.E$$ $$t_a/_2=Critical\,value\,for\,two\,tail\,test \,at\,α\,level\,of\,significance$$ $$S.E=σ\sqrt{(1-r)}r$$

Summary

For the estimation of true score. $$T=r×O+(1-r)\overline{X}$$ $$where\,r=reliability\,coefficient$$ $$C.I=\overline{X}±t_a/_2S.E$$ $$t_a/_2=Critical\,value\,for\,two\,tail\,test \,at\,α\,level\,of\,significance$$ $$S.E=σ\sqrt{(1-r)}r$$

Things to Remember

  1. $$T=r×O+(1-r)\overline{X}$$
  2. $$C.I=\overline{X}±t_a/_2S.E$$
  3. $$t_a/_2=Critical\,value\,for\,two\,tail\,test \,at\,α\,level\,of\,significance$$
  4. $$S.E=σ\sqrt{(1-r)}r$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Numerical related to estimation of true score

Numerical related to estimation of true score

For the estimation of true score.

$$T=r×O+(1-r)\overline{X}$$

$$where\,r=reliability\,coefficient$$

$$O=Observed\,frequency$$

$$\overline{X}=Mean\,score$$

$$T=True\,score$$. For confidence interval (C.I).

$$C.I=\overline{X}±t_a/_2S.E$$

$$Where\,C.I=Confidence\,interval$$

$$\overline{X}=mean\,score$$

$$t_a/_2=Critical\,value\,for\,two\,tail\,test \,at\,α\,level\,of\,significance$$

$$S.E=standard\,error$$

Here, S.E is calculated by using the relation.

$$S.E=σ\sqrt{(1-r)}r$$

$$r=reliability\,error$$

$$σ=standard\,deviation$$

Numerical.

The reliability coefficient of a test is found to be 0.75 and its found to be 0.75 and its mean score is 60. Also, the standard deviation of the test is found 10. A obtained score of 50 on the test. What is his true score? Also, compute 95% confidence interval for the true mean.

$$Solution$$.

$$Given\,that\,,r_w=0.75$$

$$\overline{X}=60\,,s.d=10$$

$$Observed\,score(o)=50$$

$$True\,score(T)=?$$

$$T=r_w×O+(1-r_w)\overline{X}$$

$$T=r_w×O+(1-0.75)\overline{60}$$

$$=52.3≈53$$

$$S.E=σ\sqrt{r_w(1-r_w)}$$

$$S.E=10\sqrt{0.75(1-0.75)}$$

$$=4.3≈4$$

$$95\%\,confidence\,interval\,of\,score$$

$$=T±1.96×4$$

$$=53±1.96×4$$

$$=53±7.48$$

$$=(60.84, 45.16)$$

$$=(61,45)$$

The reliability coefficient of a test is found as 0.65 and the mean score as 5o with standard deviation 5. Mr x obtains a score on the test. What is his true score? Also, compute 95% confidence interval for the true score.

$$Solution$$

$$Given$$.

$$Given\,that\,,r_w=0.65$$

$$\overline{X}=50\,,s.d=5$$

$$Observed\,score(o)=40$$

$$True\,score(T)=?$$

$$Letα\,=5\%, \,then\,t_a/_2=1.96$$

$$T=r×O+(1-r)\overline{X}$$

$$T=0.65×40+(1-0.65)×50$$

$$=43.5$$

$$S.E=σ\sqrt{r(1-r)}$$

$$S.E=5\sqrt{0.65(1-0.65)}$$

$$=2.38$$

$$95\%\,confidence\,interval\,of\,score$$

$$=\overline{X}±t_a/_2×S.E$$

$$=50±1.96×2$$

$$=50±3.92$$

$$=(53.92,46.08)$$

$$=54,46$$

$$95\%\,confidence\,interval\,of\,score$$

$$=54,46$$

The reliability coefficient of a test is found as 0.55 with the mean score of 45 with standard deviation3. Mr X obtains a score of 35 on this text. What is his true score? Also, compute 95% confidence interval for the true score.

$$Solution$$

$$reliability\,coefficient(r)=0.55$$

$$Mean\,score\overline{X}=45$$

$$Observed\,score(o)=35$$

$$standard\,deviation(σ)=3$$

$$True\,score(T)=?$$

$$Letα\,=5\%, \,then\,t_a/_2=1.96$$

$$T=r×O+(1-r)\overline{X}$$

$$T=0.55×35+(1-0.55)×45$$

$$=39.5$$

$$S.E=σ\sqrt{r(1-r)}$$

$$S.E=3\sqrt{0.55(1-0.55)}$$

$$=1.5$$

$$95\%\,confidence\,interval\,of\,score$$

$$=\overline{X}±t_a/_2×S.E$$

$$=45±1.96×2$$

$$=45±3.92$$

$$=(48.92.41.08)$$

$$=49,51$$

$$95\%\,confidence\,interval\,of\,score$$

$$=49,51$$

The reliability coefficient of a test is found as 0.75 with a mean score as 55 and s.d of 5. Mr X obtains a score of 45 on the test. What is his true score? Also, compute 95% confidence interval for the true value.

$$Solution$$

$$reliability\,coefficient(r)=0755$$

$$Mean\,score\overline{X}=55$$

$$Observed\,score(o)=45$$

$$standard\,deviation(σ)=5$$

$$True\,score(T)=?$$

$$Letα\,=5\%, \,then\,t_a/_2=1.96$$

$$T=r×O+(1-r)\overline{X}$$

$$T=0.75×45+(1-0.75)×55$$

$$=47.5$$

$$S.E=σ\sqrt{r(1-r)}$$

$$S.E=5\sqrt{0.75(1-0.75)}$$

$$=2.17$$

$$95\%\,confidence\,interval\,of\,score$$

$$=\overline{X}±t_a/_2×S.E$$

$$=55±1.96×2$$

$$=55±3.92$$

$$=(58.92,51.08)$$

$$=,59,51$$

$$95\%\,confidence\,interval\,of\,score$$

$$=59,51,$$

Reference

Kerlinger, F.N. Foundation of Behavioural Research. New Delhi: Surjeet Publication, 2000.

Kothari, C.R. Research Methodology. India: Vishwa Prakashan, 1990.

Singh, M.L. and J.M Singh. Understanding Research Methodology. 1998.

Singh, Mrigendra Lal. Understanding Research Methodology. Nepal: National Book centre, 2013.

Lesson

Introduction and review of sampling

Subject

Research Methodology-II

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.