Theory of realibility.
Summary
Things to Remember
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Theory of realibility.
Reliability from error component.
Any obtained score consists of two components a true value and an error,. Therefore, o=bserved value for an individual is decomposed as.
$$O_i=T+e.......(1)$$
where,
$$O_i=Total\,score\,observede\,for\,an\,individual$$
$$T=True\,score\,(which\,is\,never\,known)$$
$$e=Error$$
Since, T is never known, it is considered as the mean of observations of a large number of admistrations of a test to the same person.
$$i,e.,T= \frac{O_1+O_2+......O_n}{n}$$
$$If \,T \,and \,e \,are \,uncorrelated \,then \,Var (O_i)=Var(T)+Var(e).....2$$
$$Now\,reliability\,is \,defined\,as\,r_w= \frac{Var\,(T)}{Var\,O_i}.....3$$
From above, we have
$$r_w=1-\frac{Var\,(e)}{Var\,O_i}.....4$$
Since T is never known formula 4 is used to estimate reliability coefficient.
Example.
Suppose four items (statement are tested to five individual on a six point scale. The score observed for each of the individual found as shown below.
Individual | Items | Total | |||
1 | 2 | 3 | 4 | ||
A | 6 | 6 | 5 | 4 | 21 |
B | 4 | 6 | 5 | 3 | 18 |
C | 4 | 4 | 4 | 2 | 14 |
D | 3 | 1 | 4 | 2 | 10 |
E | 1 | 2 | 1 | 2 | 5 |
Total | 18 | 19 | 19 | 12 | 68 |
Two way alalysis of varience is carried out to find the varience or erroe component.
$$Correction \,factor\,(c.f)=\frac{T^2}{N}$$
$$where\,T=\sum{O_i}$$
$$N=r×c$$
$$r=Number\,of\,rows\,$$
$$c=Number\,of\,column$$
$$In\,above\,problem\,T=68\,,N=20$$
$$C.F=\frac{68^2}{20}=231.20$$
$$Now\,Total\,sum\,of\,square\,TSS=\sum{O_i^2}-{c.f}$$$$
$$=(6^2+6^2+.....1^2+2^2)-231.20=288.00-231.20=56.80$$
$$Sum\,of\,square\,due\,to\,(Colums)=\frac{\sum t_c^2 }{r}-cf$$
$$=\frac{18^2+19^2+19^2+12^2}{5}-231.20=6.80$$
$$Sum\,of\,square\,due\,to\,individual\,(row)=\frac{\sum t_r^2 }{c}-cf$$
$$=\frac{21^2+18^2+14^2+10^2+5^2}{4}-231.20=40.30$$
Example.
Find the reliability coefficient of the previous example by using Split-half method.
Solution.
Individual | Sum of odd | Sum of even |
Items (X) | Items (Y) | |
A | 6+5=11 | 6+4=10 |
B | 4+5=9 | 6+3=9 |
C | 4+4=8 | 4+2=6 |
D | 3+4=7 | 1+2=3 |
E | 1+1=2 | 2+1=3 |
Total | 37 | 31 |
From above table.
$$\sum{X}=37$$
$$\sum{X^2}=319$$
$$\sum{Y}=31$$
$$\sum{Y^2}=235$$
$$\sum{XY}=266$$
$$n=5$$
Therefore, the correlation coeficient bwtween X an Y is defined as.
$$r(X,Y)=\sum{XY}-{\fra{\sum{X}{n}$$
$$Mean\,(or\,\overline{X})=\frac{\sum X\sumY }{n}$$
Lesson
Reliability
Subject
Research Methodology-II
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.