Summary

Things to Remember

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Theory of realibility.

Theory of realibility.

Reliability from error component.

Any obtained score consists of two components a true value and an error,. Therefore, o=bserved value for an individual is decomposed as.

$$O_i=T+e.......(1)$$

where,

$$O_i=Total\,score\,observede\,for\,an\,individual$$

$$T=True\,score\,(which\,is\,never\,known)$$

$$e=Error$$

Since, T is never known, it is considered as the mean of observations of a large number of admistrations of a test to the same person.

$$i,e.,T= \frac{O_1+O_2+......O_n}{n}$$

$$If \,T \,and \,e \,are \,uncorrelated \,then \,Var (O_i)=Var(T)+Var(e).....2$$

$$Now\,reliability\,is \,defined\,as\,r_w= \frac{Var\,(T)}{Var\,O_i}.....3$$

From above, we have

$$r_w=1-\frac{Var\,(e)}{Var\,O_i}.....4$$

Since T is never known formula 4 is used to estimate reliability coefficient.

Example.

Suppose four items (statement are tested to five individual on a six point scale. The score observed for each of the individual found as shown below.

Individual Items Total
1 2 3 4
A 6 6 5 4 21
B 4 6 5 3 18
C 4 4 4 2 14
D 3 1 4 2 10
E 1 2 1 2 5
Total 18 19 19 12 68

Two way alalysis of varience is carried out to find the varience or erroe component.

$$Correction \,factor\,(c.f)=\frac{T^2}{N}$$

$$where\,T=\sum{O_i}$$

$$N=r×c$$

$$r=Number\,of\,rows\,$$

$$c=Number\,of\,column$$

$$In\,above\,problem\,T=68\,,N=20$$

$$C.F=\frac{68^2}{20}=231.20$$

$$Now\,Total\,sum\,of\,square\,TSS=\sum{O_i^2}-{c.f}$$$$

$$=(6^2+6^2+.....1^2+2^2)-231.20=288.00-231.20=56.80$$

$$Sum\,of\,square\,due\,to\,(Colums)=\frac{\sum t_c^2 }{r}-cf$$

$$=\frac{18^2+19^2+19^2+12^2}{5}-231.20=6.80$$

$$Sum\,of\,square\,due\,to\,individual\,(row)=\frac{\sum t_r^2 }{c}-cf$$

$$=\frac{21^2+18^2+14^2+10^2+5^2}{4}-231.20=40.30$$

Example.

Find the reliability coefficient of the previous example by using Split-half method.

Solution.

Individual Sum of odd Sum of even
Items (X) Items (Y)
A 6+5=11 6+4=10
B 4+5=9 6+3=9
C 4+4=8 4+2=6
D 3+4=7 1+2=3
E 1+1=2 2+1=3
Total 37 31

From above table.

$$\sum{X}=37$$

$$\sum{X^2}=319$$

$$\sum{Y}=31$$

$$\sum{Y^2}=235$$

$$\sum{XY}=266$$

$$n=5$$

Therefore, the correlation coeficient bwtween X an Y is defined as.

$$r(X,Y)=\sum{XY}-{\fra{\sum{X}{n}$$

$$Mean\,(or\,\overline{X})=\frac{\sum X\sumY }{n}$$

Lesson

Reliability

Subject

Research Methodology-II

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.