Step of Normalization

In order to use the wavefunction calculated from the Schrodinger equation to determine the value of any physical observable, it must be normalized so that the probability integrated over all space is equal to one. Hence above we discussed about the steps of normalizing wave function and some example.

Summary

In order to use the wavefunction calculated from the Schrodinger equation to determine the value of any physical observable, it must be normalized so that the probability integrated over all space is equal to one. Hence above we discussed about the steps of normalizing wave function and some example.

Things to Remember

  1. If \(\psi(r,t) \) does not satisfy the condition of normalization i.e.

    $$\iiint \psi^* (r,t) \psi(r,t) dxdydz\ne1$$

    then \(\psi(r,t) can not acts as the amplitude for probability distribution. It can not represent a particle.

    We should normalize \(\psi(r,t)\) to make probability distribution function.

  2. $$\psi_N(r,t)= \frac{\psi(r,t)}{\sqrt{\iiint \psi^*(r,t)\psi(r,t)dxdydz}}$$

    This equation  gives the normalized wave function.

  3. In order to use the wavefunction calculated from the Schrodinger equation to determine the value of any physical observable, it must be normalized so that the probability integrated over all space is equal to one.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Step of Normalization

Step of Normalization

Step of Normalization:

If \(\psi(r,t) \) does not satisfy the condition of normalization i.e.

$$\iiint \psi^* (r,t) \psi(r,t) dxdydz\ne1$$

then \(\psi(r,t) can not acts as the amplitude for probability distribution. It can not represent a particle.

We should normalize \(\psi(r,t)\) to make probability distribution function.

Step 1:

If \(\psi(r,t)\) is not normalize then let, \(\psi_N= N\psi(r,t) \dotsm(1)\) be normalized wave function. Where, N is Normalization constant to be determined.

Step 2:

\(\psi_N\) satisfy normalization condition. i.e.

$$\iiint\psi_N^* \psi_N dxdydz=1\dotsm(1)$$

Put value of \(\psi_N\) from (1) in equation (2)

$$\iiint[N\psi(r,t)]^*[N\psi(r,t)]dxdydz=1$$

$$|N|^2\int_{-\infty}{\infty}\int_{-\infty}{\infty}\int_{-\infty}{\infty} \psi^*(r,t) \psi(r,t)dxdydz=1$$

$$\therefore\;\; N= \frac{1}{\sqrt{\iiint\psi^*(r,t)\psi(r,t)dxdydz}}\dotsm(3)$$

The equation (3) gives the value of normalization constant.

Step 3:

Substituting equation (3) in (1) we get,

$$\psi_N(r,t)= \frac{\psi(r,t)}{\sqrt{\iiint \psi^*(r,t)\psi(r,t)dxdydz}}\dotsm(4)$$

Equation (4) gives the normalized wave function.

Question:

(a) Normalize the wave function

$$\psi(x)=Ae^{-\alpha^2x^2/2}$$

over \(-\infty\) to \(+\infty\).

$$OR$$

If \(\psi(x)= Ae^{\frac{-\alpha^2x^2}{2}}\) is normalized over \(-\infty\) to \(+\infty\) then find the value of A

(b) Find the probability density.

(c) Plot both \(\psi(x)\) and \(\rho(x)\) for both A and \(\alpha\) real.

(d) fin the region where probability of finding particle is maximum.

(e) Also find J(x) [ Probability current density ]

\(\Rightarrow \) Given, \(\psi(x)= Ae^{\frac{-\alpha^2 x^2}{2}}\) over \(-\infty\) to \(+\infty\).

(a) The condition of normalization.

$$\int_{-\infty}^\infty \psi^*(x) \psi(x) dx=1$$

$$or,\;\; \int_{-\infty}^{+\infty} \biggl(Ae^{\frac{-\alpha^2x^2}{2}}\biggr)^*\biggl(Ae^{\frac{-\alpha^2 x^2}{2}}\biggr)dx=1$$

$$or,\;\; |A|^2\int_{-\infty}^{+\infty} e^{-2\cdot \alpha^2x^2/2}dx=1$$

$$or,\;\; |A|^2 \int_{-\infty}^{+\infty} e^{-\alpha^2 x^2}dx=1\dotsm(1)$$

Let,

$$I= \int_{-\infty}^{+\infty} e^{-\alpha^2}x^2 dx$$

$$=2\int_0^{\infty} e^{-alpha^2x^2}dx$$

Put, \(\alpha^2x^2=y\Rightarrow x=\frac{\sqrt{y}}{alpha}\)

$$dx=\frac{1}{2\sqrt{y}}\frac{dy}{\alpha}$$

When x=0, y=0, x=\(\infty\), y= \(\infty\)

$$I= 2\int_0^\infty e^{-y} \frac{1}{2\sqrt{y}}\frac{dy}{\alpha}$$

$$=\frac{1}{\alpha}\int_0^\infty e^{-y} y^{\frac{-1}{2}} dy$$

$$=\frac{1}{\alpha}\int_0^\infty e^{-y}y^{\frac12-1}dy$$

$$=\frac{1\sqrt{\frac12}}{\alpha}$$

$$=\frac{\sqrt{\pi}}{\alpha}$$

From (1), \(|A|^2 \frac{\sqrt{\pi}}{\alpha}=1\)

$$\therefore\; A= \biggl(\frac{\alpha}{\sqrt{\pi}}\biggr)^\frac12= normalization\;constant$$

The normalized wwave function is,

$$\psi_N(x)=\biggl[\frac{\alpha}{\sqrt{\pi}}\biggr]^\frac12 e^{\frac{-\alpha^2 x^2}{2}}$$

(b) Probability density:

$$\rho(x)= \psi_N^*(x)\psi_N(x)$$

$$\therefore\;\; \rho(x)=\frac{\alpha}{\sqrt{\pi}}e^{-\alpha^2x^2}$$

(c) Plot \(\psi_N(x)\) and \(\rho(x)\):

Fig

(d) the region where the probability of finding of particle is maximum, must have maximum value of probability density i.e.

\(\frac{d\rho(x)}{dx}=0\) [ maxima and minima]

$$\frac{d}{dx}\biggl[\frac{\alpha}{\sqrt{\pi}}e^{-\alpha^2x^2}\biggr]=0$$

$$or,\;\; \frac{\alpha}{\sqrt{\pi}}\biggl[e^{-\alpha^2 x^2 }\times (-2\alpha^2 x)\biggr]=0$$

Either, x=0 or, \(e^{-\alpha^2 x^2}=0\)

For finite value of x \( e^{-\alpha^2 x^2}\ne0 \) \(\therefore\;; x=0\)

So, the region where, probability of finding particle is maximum is around x=0.

(e) Value of J(x)

$$J(x)=\frac{\hbar}{2im}\biggl[\psi^*\frac{d\psi}{dx}-\psi\frac{d\psi^*}{dx}\biggr]$$

Here, \(\psi^*(x)=\psi(x)\) because A and \(\alpha\0 are real.

$$\therefore\;\; J(x)=0$$

So, the probability current density is zero. i.e. there is localized around x=0, it is not moving.

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Quantum mechanical Wave Propagation

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.