Solution of Schrodinger equation

The Schrödinger equation is the fundamental equation of physics for describing quantum mechanical behavior. It is also often called the Schrödinger wave equation, and is a partial differential equation that describes how the wavefunction of a physical system evolves over time. Here in this chapter we discussed about the solution of Schrodinger equation in one-dimension. I.e solution for the one dimensional time independent Schrodinger equation.

Summary

The Schrödinger equation is the fundamental equation of physics for describing quantum mechanical behavior. It is also often called the Schrödinger wave equation, and is a partial differential equation that describes how the wavefunction of a physical system evolves over time. Here in this chapter we discussed about the solution of Schrodinger equation in one-dimension. I.e solution for the one dimensional time independent Schrodinger equation.

Things to Remember

  • Point and formula to be noted:
  1. $$\therefore\;\; \phi(t)= \phi(0) e^{\frac{-iEt}{\hbar}}\dotsm(3)$$

    Equation (3) gives the time-evolution of wave function ( packet ).

  2. The one dimensional time independent Schrodinger equation is,

    $$\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x) \psi(x)= E\psi(x)$$

  3. $$\psi(x)= Ae^{ikx}+Be^{-ikx}$$ oscillatory solution of Schrodinger equation.
  4. $$[\psi(x)= Ce^{kx} + De^{-kx}]\dotsm(10)$$

    Equation (10) represents non-oscillatory solution i.e exponentially decreasing or growing solution.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Solution of Schrodinger equation

Solution of Schrodinger equation

Solution of Equation:

$$i\hbar\frac{\partial \phi(t)}{\partial t}= E\phi(t)$$

$$\Rightarrow i\hbar\frac{\partial phi(t)}{\partial t}=E\phi(t)\dotsm(1)$$

$$or,\;\; \frac{\partial\phi(t)}{\phi(t)}=\frac{E}{i\hbar}\partial t$$

Integrating above equation,

$$\int\frac{\partial \phi(t)}{\phi(t)}=\frac{E}{i\hbar}\int \partial t$$

$$\therefore\;\; log_e[\phi(t)]=\frac{E}{i\hbar}t+K_1\dotsm(2)$$

using boundary condition;

At t=0, \(\phi(t)=\phi(0)\)

$$log_e[\phi(0)]=K_1$$

From (2)

$$\therefore\;\; log_e[\phi(t)]=\frac{Et}{i\hbar}+log_e\phi(0)$$

$$or,\;\; log_e\biggl[\frac{\phi(t)}{\phi(0)}\biggr]=\frac{Et}{i\hbar}$$

$$or,\;\; log_e\biggl(\frac{\phi(t)}{\phi(0)}\biggr)=\frac{i}{i^2}\frac{Et}{\hbar}=\frac{-iEt}{\hbar}$$

$$or,\;\; \frac{\phi(t)}{\phi(0)}=e^{\frac{-iEt}{\hbar}}$$

$$\therefore\;\; \phi(t)= \phi(0) e^{\frac{-iEt}{\hbar}}\dotsm(3)$$

Equation (3) gives the time-evolution of wave function ( packet ).

Solution of Equation: Schrodinger equation in one dimension.

The one dimensional time independent Schrodinger equation is,

$$\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x) \psi(x)= E\psi(x)$$

$$or,\;\; \frac{-\hbar^2}{2m}\frac{d^2\psi((x)}{dx^2}=[E-V(x)]\psi(x)$$

$$or,\;\;\frac{d^2\psi(x)}{ds^2}=\frac{-2m}{\hbar^2}[E-V(x)]\psi(x)$$

$$or,\;\; frac{d^2\psi(x)}{dx^2}+\frac{2m}{\hbar^2}[E-V(x)]\psi(x)=0\dotsm(4)$$

Solution of equation (4) depends upon the value of V(x) and specified boundary condition.

Case (1): For V(x)=0 [Free particle]

$$\frac{d^2\psi(x)}{dx^2}=\frac{2m}{\hbar^2}E\psi(x)=0$$

$$\frac{d^2\psi(x)}{dx^2}+k^2\psi(x)=0\dotsm(5)$$

$$k^2=\frac{2mE}{\hbar^2}$$

$$\Rightarrow k= \sqrt{\frac{2mE}{\hbar^2}}$$

k is identified as wave number.

Solution of equation (5) is

$$\psi(x)= Ae^{ikx}+Be^{-ikx}\dotsm(6)$$

$$OR$$

$$[\psi(x)= Asinkx+Bcoskx]$$

Equation (6) is the required oscillatory solution.

Here, A and B represents amplitude.

Here \(Ae^{ikx}\) represents, particle travelling along +ve X-axis. i.e. towards right.

and \(Be^{-ikx}\) represents, particle travelling along -ve x-axis i.e. towards left.

Case II: For \(V(x)= V_0<E\) [Where \(V_0\)= Constant ]

Equation (4) becomes,

$$\frac{d^2\psi(x)}{dx^2}+\frac{2m}{\hbar^2}[E-V_0]\psi(x)=0$$

$$or,\;\; \frac{d^2\psi(x)}{dx^2}+ k^2 \psi(x)=0\dotsm(7)$$

Where, \(k= \sqrt{\frac{2m(E-V_0}{\hbar^2}}\) (real and +ve)

Solution of equation (7) is

$$[\psi(x)=Ce^{ikx}+De^{-ikx}]\dotsm(8)$$

(Oscillatory Solution )

Case(3): For \(V(x)= V_0>E\) [ Where \(V_0\)= Constant ]

$$\frac{d^2\psi(x)}{dx^2}+\frac{2m}{\hbar^2}(E-V_0)\psi(x)=0$$

$$or,\;\; \frac{d^2\psi(x)}{dx^2}-\frac{2m}{\hbar^2}(v_0-E)\psi(x)=0$$

$$or,\;\; \frac{d^2\psi(x)}{dx^2}-k^2\psi(x)=0\dotsm(9)$$

Where, \(k=\sqrt{\frac{2m(V_0-E}{\hbar^2}}\)

Solution of equation (9) is

$$[\psi(x)= Ce^{kx} + De^{-kx}]\dotsm(10)$$

Equation (10) represents non-oscillatory solution i.e exponentially decreasing or growing solution.

Finally solution (1) for free particle

$$\psi(x,t)=\phi(t)\psi(x)$$

$$=\phi(0)e^{\frac{-iEt}{\hbar}}\cdot[Ae^{ikx}+Be^{-ikx}]$$

For +ve x-axis. \(\psi(x,t)= \phi(0)e^{\frac{-iEt}{\hbar}}Ae^{ikx}\)

$$=\phi(0) Ae^{i(kx-\frac{Et}{\hbar})}$$

$$\psi(x,t)=Ne^{i(kx-\omega t)}$$

For negative X-axis,

$$\psi(x,t)= Ne^{i(-kx-\omega t)}$$

Where, \(N=\phi(0)B\)

For a bounded particle:

$$\psi(x,t)=\phi(0)e^{\frac{-iEt}{\hbar}}[Ae^{ikx}+Be^{-ikx}]\longrightarrow (E>V_0)$$

$$\psi(x,t)=\phi(0)e^{\frac{-iEt}{\hbar}}[ce^{kx}+De^{-kx}]\longrightarrow (E<V_0)$$

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Quantum mechanical Wave Propagation

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.