Example of Normalization

In this chapter we discussed some of the example associated with normalization of wave function.

Summary

In this chapter we discussed some of the example associated with normalization of wave function.

Things to Remember

  • $$\therefore \Delta x\cdot \Delta P_x=\frac{\hbar}{2}$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Example of Normalization

Example of Normalization

Q.1 Normalize: \(\psi(x)=e^{\frac{-x^2}{2}}; -b\leq x\leq b\).

Here, \(\psi(x)= e^{\frac{-x^2}{2}}; -b\leq x\leq b\)

Let \(\psi_N(x)= A\psi(x)= Ae^{\frac{-x^2}{2}}; -b\leq x\leq b\)

We have, $$\int_{-b}^b \psi_N^*(x) \psi_N(x)dx=1$$

$$|A|^2\int_{-b}^b e^{-x^2} dx=1$$

Case (I)

$$If \; b\longrightarrow \infty \; then$$

$$|A|^2 \int_{-\infty}^\infty e^{-x^2} dx=1$$

$$or,\;\; |A|^2 \sqrt{\pi}=1$$

$$A= \biggl(\frac{1}{\pi}\biggr)^\frac14$$

Case(II)

Using $$e^{-x^2}=1+\frac{-x^2}{1!} + \frac{(-x^2)^2}{2!}+\dotsm$$

$$=1-\frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!}+\dotsm$$

Only when |x|<b

$$or,\; |A|^2 \int_{-b}^b\biggl[ 1-\frac{x^2}{1!}+ \frac{x^4}{2!}+\dotsm\biggr]dx=1$$

$$or,\; |A|^2 \biggl[|x|_{-b}^b -\frac{1}{1!} \biggl|\frac{x^3}{3}\biggr|_{-b}^b +\frac{1}{2!} \biggl|\frac{x^5}{5}\biggr|_{-b}^b\dotsm\biggr]=1$$

$$or,\; |A|^2 \biggl[2b-\frac{2b^3}{3\times 1}+\frac{2b^5}{5\times 2!}\dotsm \biggr]=1$$

$$\therefore\; A= \frac{1}{\sqrt{2(b-\frac{b^3}{3}+\frac{b^5}{10}-\dotsm)}}$$

Hence, the normalized wave function is,

$$\psi_N(x)=\biggl(\frac{1}{\pi}\biggr)^\frac14 e^{\frac{-x^2}{2}}; -b\leq x\leq b, b\longrightarrow \infty$$

$$=\frac{e^{\frac{-x^2}{2}}}{\sqrt{2(b-\frac{b^3}{3}+\frac{b^5}{10}\dotsm)}}; -b\leq x\leq b, |x|<b.$$

Q.2

  1. Normalize, \(\psi(x)= Ae^{\frac{-\alpha^2 x^2}{2}}\) over \(-\infty\; to\; +\infty\)
  2. Find \(<x>. <x^2> \)and \(\Delta x=[<x^2>-<x>^2]^\frac12\)

iii. Find\( <P_x>, <P_x^2>\) and \(\Delta P_x=[<P_x^2>- <P_x>^2]^\frac12\)

  1. Does this wave packet is in consistent with, Heisenberg's uncertainity principle?

\(\Rightarrow\) $$ A=\biggl(\frac{\alpha}{\sqrt{\pi}}\biggr)^\frac12$$

Normalized wave function

$$\psi_N(x)=\biggl(\frac{\alpha}{\sqrt{\pi}}\biggr)^\frac12 e^{\frac{-\alpha^2 x^2}{2}}$$

Now,

$$<x>=\int_{-\infty}^\infty \psi_N^*(x)[\hat x \psi_N(x)]dx$$

$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{-\alpha^2\frac{x^2}{2}}xe^{-\frac{\alpha^2x^2}{2}}dx$$

$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty xe^{-\alpha^2 x^2}dx$$

$$\therefore\; <x>=0$$

Again, $$<x^2>=\int_{-\infty}^\infty \psi_N^*x)[\hat x^2 \psi_N(x)]dx$$

$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty x^2 e^{-\alpha^2 x^2} dx$$

$$=\frac{2\alpha}{\sqrt{\pi}}\int_0^\infty x^2 e^{-\alpha^2 x^2}dx$$

\(Put\; y= \alpha^2 x^2\Rightarrow \frac{y}{\alpha^2}= x^2\)

$$\Rightarrow x= \frac{y^\frac12}{\alpha}$$

$$\Rightarrow dx= \frac{1}{2\alpha}y^{\frac{-1}{2}}dy$$

$$<x^2>=\frac{2\alpha}{\sqrt{\pi}}\int_0^\infty \frac{y}{\alpha^2} e^{-y}\frac{y^\frac{-1}{2}}{2\alpha}dy$$

$$=\frac{2\cdot 1}{2\sqrt{\pi}\alpha^2}\int_0^\infty e^{-y}y^\frac12 dy$$

$$=\frac{1}{\sqrt{\pi}\alpha^2}\gamma{\frac32}$$

$$\frac12 \Gamma{\frac12} \frac{1}{\sqrt{\pi}\alpha^2}$$

$$=\frac{1}{2\alpha^2}$$

$$\therefore\; \Delta x= [ <x^2>- <x>^2]^\frac12= \biggl[\frac{1}{2\alpha^2}-0\biggr]^\frac12$$

$$=\biggr[\frac{1}{2\alpha^2}\biggr]^\frac12$$

$$=\frac{1}{\alpha\sqrt{2}}$$

Again, we have \(\hat P_x= -\hbar\frac{\partial}{\partial x}\)

$$<P_x>=\int_{-\infty}^\infty \psi^*(x)[\hat P_x \psi(x)]dx$$

$$\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}}\biggl[-i\hbar\frac{\partial}{\partial x}\biggl(e^{\frac{-\alpha^2 x^2}{2}}\biggr)\biggr]dx$$

$$=(-i\hbar)\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}}e^{\frac{-\alpha^2 x^2 }{2}}\biggl(\frac{-2x\alpha^2}{2}\biggr)dx$$

$$=i\hbar\frac{\alpha^3}{\sqrt{\pi}}\int_{-\infty}^\infty xe^{-\alpha^2 x^2}dx$$

$$=0$$

And,$$<P_x^2>=\int_{-\infty}^\infty \psi^*(x)[\hat P_x^2\psi(x)]dx$$

$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}}\biggl[-\hbar^2\frac{\partial^2}{\partial x^2}(e^{\frac{-\alpha^2 x^2}{2}})\biggr]dx$$

$$=\frac{-\hbar^2\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}} \frac{\partial}{partial x}\biggl[e^{\frac{-\alpha^2 x^2}{2}}\bigg(\frac{-2x\alpha^2}{2}\biggr)\biggr]dx$$

$$=\frac{\hbar^2\alpha^3}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2x^2}{2}}\biggl(e^{\frac{-\alpha^2x^2}{2}}-\frac{x2x\alpha^2}{2}e^{\frac{-\alpha^2 x^2}{2}}\biggr)dx$$

$$=\frac{\hbar^2\alpha^3}{\sqrt{\pi}}\int_{-\infty}^\infty e^{-\alpha^2 x^2} dx-\frac{\hbar^2 \alpha^5}{\sqrt{\pi}}\int_{-\infty}^\infty x^2 e^{-\alpha^2 x^2 } dx$$

$$=\frac{\hbar^2\alpha^3}{\sqrt{\pi}}\frac{\sqrt{\pi}}{\alpha}-\frac12 \frac{\sqrt{\pi}}{\alpha^2}\frac{\hbar^2\alpha^5}{\sqrt{\pi}}$$

$$=\frac{\hbar^2\alpha^2}{2}$$

Now, $$\Delta P_x=[<P_x^>-<P_x>^2]^\frac12$$

$$[\frac{\hbar^2\alpha^2}{2}-0]^\frac12$$

$$=\frac{\hbar\alpha}{\sqrt{2}}$$

Then, $$\Delta x\cdot \Delta P_x=\frac{1}{\alpha\sqrt{2}}\frac{\hbar\alpha}{\sqrt{2}}$$

$$=\frac{\hbar}{2}$$

$$\therefore\;\; \Delta x\cdot \Delta P_x=\frac{\hbar}{2}$$

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Quantum mechanical Wave Propagation

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.