Example of Normalization
In this chapter we discussed some of the example associated with normalization of wave function.
Summary
In this chapter we discussed some of the example associated with normalization of wave function.
Things to Remember
- $$\therefore \Delta x\cdot \Delta P_x=\frac{\hbar}{2}$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Example of Normalization
Q.1 Normalize: \(\psi(x)=e^{\frac{-x^2}{2}}; -b\leq x\leq b\).
Here, \(\psi(x)= e^{\frac{-x^2}{2}}; -b\leq x\leq b\)
Let \(\psi_N(x)= A\psi(x)= Ae^{\frac{-x^2}{2}}; -b\leq x\leq b\)
We have, $$\int_{-b}^b \psi_N^*(x) \psi_N(x)dx=1$$
$$|A|^2\int_{-b}^b e^{-x^2} dx=1$$
Case (I)
$$If \; b\longrightarrow \infty \; then$$
$$|A|^2 \int_{-\infty}^\infty e^{-x^2} dx=1$$
$$or,\;\; |A|^2 \sqrt{\pi}=1$$
$$A= \biggl(\frac{1}{\pi}\biggr)^\frac14$$
Case(II)
Using $$e^{-x^2}=1+\frac{-x^2}{1!} + \frac{(-x^2)^2}{2!}+\dotsm$$
$$=1-\frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!}+\dotsm$$
Only when |x|<b
$$or,\; |A|^2 \int_{-b}^b\biggl[ 1-\frac{x^2}{1!}+ \frac{x^4}{2!}+\dotsm\biggr]dx=1$$
$$or,\; |A|^2 \biggl[|x|_{-b}^b -\frac{1}{1!} \biggl|\frac{x^3}{3}\biggr|_{-b}^b +\frac{1}{2!} \biggl|\frac{x^5}{5}\biggr|_{-b}^b\dotsm\biggr]=1$$
$$or,\; |A|^2 \biggl[2b-\frac{2b^3}{3\times 1}+\frac{2b^5}{5\times 2!}\dotsm \biggr]=1$$
$$\therefore\; A= \frac{1}{\sqrt{2(b-\frac{b^3}{3}+\frac{b^5}{10}-\dotsm)}}$$
Hence, the normalized wave function is,
$$\psi_N(x)=\biggl(\frac{1}{\pi}\biggr)^\frac14 e^{\frac{-x^2}{2}}; -b\leq x\leq b, b\longrightarrow \infty$$
$$=\frac{e^{\frac{-x^2}{2}}}{\sqrt{2(b-\frac{b^3}{3}+\frac{b^5}{10}\dotsm)}}; -b\leq x\leq b, |x|<b.$$
Q.2
- Normalize, \(\psi(x)= Ae^{\frac{-\alpha^2 x^2}{2}}\) over \(-\infty\; to\; +\infty\)
- Find \(<x>. <x^2> \)and \(\Delta x=[<x^2>-<x>^2]^\frac12\)
iii. Find\( <P_x>, <P_x^2>\) and \(\Delta P_x=[<P_x^2>- <P_x>^2]^\frac12\)
- Does this wave packet is in consistent with, Heisenberg's uncertainity principle?
\(\Rightarrow\) $$ A=\biggl(\frac{\alpha}{\sqrt{\pi}}\biggr)^\frac12$$
Normalized wave function
$$\psi_N(x)=\biggl(\frac{\alpha}{\sqrt{\pi}}\biggr)^\frac12 e^{\frac{-\alpha^2 x^2}{2}}$$
Now,
$$<x>=\int_{-\infty}^\infty \psi_N^*(x)[\hat x \psi_N(x)]dx$$
$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{-\alpha^2\frac{x^2}{2}}xe^{-\frac{\alpha^2x^2}{2}}dx$$
$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty xe^{-\alpha^2 x^2}dx$$
$$\therefore\; <x>=0$$
Again, $$<x^2>=\int_{-\infty}^\infty \psi_N^*x)[\hat x^2 \psi_N(x)]dx$$
$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty x^2 e^{-\alpha^2 x^2} dx$$
$$=\frac{2\alpha}{\sqrt{\pi}}\int_0^\infty x^2 e^{-\alpha^2 x^2}dx$$
\(Put\; y= \alpha^2 x^2\Rightarrow \frac{y}{\alpha^2}= x^2\)
$$\Rightarrow x= \frac{y^\frac12}{\alpha}$$
$$\Rightarrow dx= \frac{1}{2\alpha}y^{\frac{-1}{2}}dy$$
$$<x^2>=\frac{2\alpha}{\sqrt{\pi}}\int_0^\infty \frac{y}{\alpha^2} e^{-y}\frac{y^\frac{-1}{2}}{2\alpha}dy$$
$$=\frac{2\cdot 1}{2\sqrt{\pi}\alpha^2}\int_0^\infty e^{-y}y^\frac12 dy$$
$$=\frac{1}{\sqrt{\pi}\alpha^2}\gamma{\frac32}$$
$$\frac12 \Gamma{\frac12} \frac{1}{\sqrt{\pi}\alpha^2}$$
$$=\frac{1}{2\alpha^2}$$
$$\therefore\; \Delta x= [ <x^2>- <x>^2]^\frac12= \biggl[\frac{1}{2\alpha^2}-0\biggr]^\frac12$$
$$=\biggr[\frac{1}{2\alpha^2}\biggr]^\frac12$$
$$=\frac{1}{\alpha\sqrt{2}}$$
Again, we have \(\hat P_x= -\hbar\frac{\partial}{\partial x}\)
$$<P_x>=\int_{-\infty}^\infty \psi^*(x)[\hat P_x \psi(x)]dx$$
$$\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}}\biggl[-i\hbar\frac{\partial}{\partial x}\biggl(e^{\frac{-\alpha^2 x^2}{2}}\biggr)\biggr]dx$$
$$=(-i\hbar)\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}}e^{\frac{-\alpha^2 x^2 }{2}}\biggl(\frac{-2x\alpha^2}{2}\biggr)dx$$
$$=i\hbar\frac{\alpha^3}{\sqrt{\pi}}\int_{-\infty}^\infty xe^{-\alpha^2 x^2}dx$$
$$=0$$
And,$$<P_x^2>=\int_{-\infty}^\infty \psi^*(x)[\hat P_x^2\psi(x)]dx$$
$$=\frac{\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}}\biggl[-\hbar^2\frac{\partial^2}{\partial x^2}(e^{\frac{-\alpha^2 x^2}{2}})\biggr]dx$$
$$=\frac{-\hbar^2\alpha}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2 x^2}{2}} \frac{\partial}{partial x}\biggl[e^{\frac{-\alpha^2 x^2}{2}}\bigg(\frac{-2x\alpha^2}{2}\biggr)\biggr]dx$$
$$=\frac{\hbar^2\alpha^3}{\sqrt{\pi}}\int_{-\infty}^\infty e^{\frac{-\alpha^2x^2}{2}}\biggl(e^{\frac{-\alpha^2x^2}{2}}-\frac{x2x\alpha^2}{2}e^{\frac{-\alpha^2 x^2}{2}}\biggr)dx$$
$$=\frac{\hbar^2\alpha^3}{\sqrt{\pi}}\int_{-\infty}^\infty e^{-\alpha^2 x^2} dx-\frac{\hbar^2 \alpha^5}{\sqrt{\pi}}\int_{-\infty}^\infty x^2 e^{-\alpha^2 x^2 } dx$$
$$=\frac{\hbar^2\alpha^3}{\sqrt{\pi}}\frac{\sqrt{\pi}}{\alpha}-\frac12 \frac{\sqrt{\pi}}{\alpha^2}\frac{\hbar^2\alpha^5}{\sqrt{\pi}}$$
$$=\frac{\hbar^2\alpha^2}{2}$$
Now, $$\Delta P_x=[<P_x^>-<P_x>^2]^\frac12$$
$$[\frac{\hbar^2\alpha^2}{2}-0]^\frac12$$
$$=\frac{\hbar\alpha}{\sqrt{2}}$$
Then, $$\Delta x\cdot \Delta P_x=\frac{1}{\alpha\sqrt{2}}\frac{\hbar\alpha}{\sqrt{2}}$$
$$=\frac{\hbar}{2}$$
$$\therefore\;\; \Delta x\cdot \Delta P_x=\frac{\hbar}{2}$$
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Quantum mechanical Wave Propagation
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.