Equation of continuity in quantum mechanics
Here we discussed about the equation of continuity in quantum mechanics. It also referred as conservation of probability. We derive this relation from Schrodinger equation. Schrodinger equation is a differential equation which forms the basis of the quantum-mechanical description of matter in terms of the wave-like properties of particles in a field. Its solution is related to the probability density of a particle in space and time.
Summary
Here we discussed about the equation of continuity in quantum mechanics. It also referred as conservation of probability. We derive this relation from Schrodinger equation. Schrodinger equation is a differential equation which forms the basis of the quantum-mechanical description of matter in terms of the wave-like properties of particles in a field. Its solution is related to the probability density of a particle in space and time.
Things to Remember
-
$$or,\;\; \frac{\partial }{\partial t}(\psi^*\psi)+\nabla\cdot\biggl[\frac{\hbar}{2im}[\psi^*\nabla\psi-\psi\nabla\psi^*]\biggr]=0\dotsm(3)$$
Equation(3) is in the form of equation of continuity electrodynamics.:
-
According to Max-Born interpretation
\(\rho= \psi^*\psi \) is interpreted as probability density of finding particle at point \(\vec r\) in time t.
-
$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \psi^* (r,t) \psi(r,t) dxdydz=1\dotsm(8)$$
Any wave function or wavepacket which satisfy equation (8) is said to be Normalised wave function.
-
$$(a)\;\;\; \vec J= Im \; of \; [ \psi^* \frac{\hbar}{m}\nabla\psi]$$
$$(b)\;\;\; \vec J = Re \; of \; [\psi^* -\frac{i\hbar}{m}\nabla\psi]$$
$$(c)\;\;\; \vec J= \frac{i\hbar}{2m}[ \psi \nabla\psi^* - \psi^* \nabla\psi]$$
$$(d)\;\;\;\vec J= \frac{\hbar}{2im}[\psi^*\nabla\psi-\psi\nabla\psi^*]$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Equation of continuity in quantum mechanics
Equation of continuity in quantum mechanics:
The motion of a particle in Quantum Mechanics is descried by the propagation of wave packet. The equation of motion for wave packet is Schrodinger equation
$$i\hbar \frac{\partial (\vec r,t)}{\partial t}=\frac{-\hbar^2}{2m}\nabla^2 \psi (\vec r, t)+ V(r) \psi ( r,t)\dotsm(1)$$
Taking complex conjugate of equation (1)
$$-\hbar\frac{\partial^* (\vec r, t)}{\partial t}= \frac{-\hbar^2}{2m}\nabla^2 \psi*(\vec r, t)+ V(r) \psi* ( r,t) \dotsm(2)$$
Multiplying equation (1) by \(\psi*(r, t)\) and (2) by \( \psi(r,t)\)
$$i\hbar \frac{\partial (\vec r,t)}{\partial t}=\frac{-\hbar^2}{2m}\nabla^2 \psi (\vec r, t)+ V(r) \psi ( r,t)\times [\psi^*(r,t)]$$
$$-\hbar\frac{\partial^* (\vec r, t)}{\partial t}= \frac{-\hbar^2}{2m}\nabla^2 \psi*(\vec r, t)+ V(r) \psi* ( r,t) \times [\psi(r,t)]$$
and then subtracting (2) from (1) we get,
$$i\hbar\biggl[\psi^\frac{\partial \psi}{\partial t}+\psi\frac{\partial \psi^*}{\partial t}\biggr]=\frac{-\hbar^2}{2m}\biggl[\psi^* \nabla^2 \psi-\psi\nabla^2\psi^*\biggr]+0$$
$$or,\;\; \frac{\partial (\psi^*\psi}{\partial t}= \frac{-\hbar^2}{2m\hbar i}\biggl[\psi^* \nabla^2\psi- \psi \nabla^2\psi^*]$$
$$or,\;\;\frac{\partial}{\partial t}(\psi^*\psi)+\frac{\hbar}{2im}[\psi^* \nabla^2\psi-\psi \nabla^2\psi^*]=0$$
$$or,\;\; \frac{\partial }{\partial t}(\psi^*\psi)+\nabla\cdot\biggl[\frac{\hbar}{2im}[\psi^*\nabla\psi-\psi\nabla\psi^*]\biggr]=0\dotsm(3)$$
Equation(3) is in the form of equation of continuity electrodynamics.:
$$\frac{\partial rho}{\partial t}+\nabla\cdot \vec J=0\dotsm(4)$$
From (3) and (4)
$$\rho= \psi^*\psi= \psi^*(r,t)\psi(r,t)\dotsm(5)=|\psi(r,t)|^2$$
$$\vec J= \frac{\hbar}{2im}\biggl[\psi^*\nabla\psi-\psi\nabla \psi^*]\dotsm(6)$$
Equation (3) is known as equation of continuity in quantum mechanics
According to Max-Born interpretation
\(\rho= \psi^*\psi \) is interpreted as probability density of finding particle at point \(\vec r\) in time t.
unit of \(\rho=\psi^*\psi=|\psi|^2 \) is \(m^{-3}\) [ 3-dimension
\(\therefore\) Probability of finding particle in volume dV around point \(\vec r\) in time 't' is
$$dp=\rho(r,t) dV\dotsm(7)$$
Integrating equation (7) over all space, we get the total probability of finding particle over all space ( i.e. 1)
$$P_{total}=1=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \rho(r,t)dxdydz$$
Here, dv= dxdydz
$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \psi^* (r,t) \psi(r,t) dxdydz=1\dotsm(8)$$
Any wave function or wavepacket which satisfy equation (8) is said to be Normalised wave function.
$$ If\;\; \iiint \psi^*(r,t) \psi(r,t)dxdydz\ne 1$$
then \(\psi(r,t)\) is said to be unnormalised wave function.
Here, \(\vec = \frac{\hbar}{2m}[ \psi^* \nabla \psi- \psi \nabla \psi^*], is a probability current density, it represents the flow of probability per unit area per second. It's unit is \(m^{-2}s^{-1}\).
Case (1):
For any real wave function:
$$\psi^*= \psi$$
So, $$ \vec J= \frac{\hbar}{2im} [\psi^* \nabla\psi^*-\psi* \nabla\psi*]=0$$
The probability current density for real wave function always zero.
Case (2):
for \(\psi\) complex \(\vec J\) may or may not be zero, such that
$$(a)\;\;\; \vec J= Im \; of \; [ \psi^* \frac{\hbar}{m}\nabla\psi]$$
$$(b)\;\;\; \vec J = Re \; of \; [\psi^* -\frac{i\hbar}{m}\nabla\psi]$$
$$(c)\;\;\; \vec J= \frac{i\hbar}{2m}[ \psi \nabla\psi^* - \psi^* \nabla\psi]$$
$$(d)\;\;\;\vec J= \frac{\hbar}{2im}[\psi^*\nabla\psi-\psi\nabla\psi^*]$$
\(\Rightarrow\) Let \(\psi= A+iB\) be the form of wave function. Where A and B are both function of \(\vec r\) and t and real but \\psi\) is the complex.
We have,
$$\vec J= \frac{\hbar}{2im}[\psi^*\nabla\psi-\psi\nabla\psi^*]$$
$$=\frac{\hbar}{2im}[(A-iB)\nabla(A+iB)-(A+iB)\nabla(A-iB)]$$
$$\frac{\hbar}{2im}[A\nabla A+ iA\nabla B-iB\nabla A - i^2B\nabla B- A\nabla A+ iA\nabla B- iB\nabla A+ i^2 B \nabla B]$$
$$=\frac{\hbar}{2im}2i[A\nabla B- B\nabla A]$$
$$\therefore \vec J= \frac{\hbar}{m}[ A\nabla B- B\nabla A]\dotsm(1)$$
Again,
$$[\psi^*\nabla\psi]= (A-iB)\nabla (A+ iB)$$
$$=A\nabla A+ iA\nabla B- iB\nabla A- i^2 B\nabla B$$
$$= ( A\nabla A+ B\nabla B)+ i(A\nabla B - B\nabla a)$$
$$\therefore Im \; of \; [\psi^*\frac{\hbar}{m}\nabla \psi]= \frac{\hbar}{m}[A\nabla B- B\nabla A]\dotsm(2)$$
From equation (1) and (2), We get,
$$\therefore \;\; \vec J= Im\; of \; [\psi^*\frac{\hbar}{m}\nabla \psi]\dotsm(3)$$
Again,
$$\frac{[\psi^*\nabla\psi]}{i}= \frac{(A- iB)\nabla ( A+ iB)}{i}$$
$$=\frac{(A\nabla A+ B\nabla B)}{i}+ \frac{i(A\nabla B- B\nabla A)}{i}$$
$$\therefore Real \; of \; [\psi^* \frac{\hbar}{im}\nabla \psi]=\frac{\hbar }{m} [A\nabla B- B\nabla A]\dotsm(4)$$
From (1) and (4)
$$\vec J= Re\; of \; [\psi^* \frac{\hbar}{im}\nabla\psi]$$
$$\therefore \; \vec J= Re\; of \; [\psi^*-\frac{-i\hbar}{m}\nabla\psi]$$
$$Proved$$
$$or,\;\; \vec J= Re\; of \; [\psi^*\frac{(-\hbar \nabla \psi)}{m}]$$
$$=Re\;of\; [\psi^* \frac{(\hat p \psi)}{m}]\dotsm(5)$$
Where, \(\hat p= -i\hbar \nabla\) = Momentum operator.
$$\therefore \; \vec J= Re\; of \; [ \psi^*\frac{(\hat p \psi}{m}]$$
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Quantum mechanical Wave Propagation
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.