Square of angular momentum operator, Ladder operator and some numerical examples
In this chapter we discussed about the Square of angular momentum operator, Ladder operator and some numerical examples. Associated with each measurable parameter in a physical system is a quantum mechanical operator. Such operators arise because in quantum mechanics you are describing nature with waves (the wavefunction) rather than with discrete particles whose motion and dymamics can be described with the deterministic equations of Newtonian physics. Part of the development of quantum mechanics is the establishment of the operators associated with the parameters needed to describe the system.
Summary
In this chapter we discussed about the Square of angular momentum operator, Ladder operator and some numerical examples. Associated with each measurable parameter in a physical system is a quantum mechanical operator. Such operators arise because in quantum mechanics you are describing nature with waves (the wavefunction) rather than with discrete particles whose motion and dymamics can be described with the deterministic equations of Newtonian physics. Part of the development of quantum mechanics is the establishment of the operators associated with the parameters needed to describe the system.
Things to Remember
-
$$[\hat L^2, \hat L_z] =0$$
Hence square of angular momentum and component of angular momentum of a particle can be measured accurately and simultaneously.
-
$$\hat L_- = \hat L_x - i\hat L_y $$ are called ladder operator.
Where \(\hat L_x\) and \(\hat L_y\) are x and y-component of angular momentum operator.
\(\hat L_+\) is known as raising operator because it raises the m^{th} level wave function to (m+1)^{th} level. \(\hat L_-\) is known as lowering operator because it lowers the \(m^{th}\) level wavefunction to \((m-1)^{th}\) level.
- $$[\hat L_x, \hat L_y] = i\hbar \hat L_z$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Square of angular momentum operator, Ladder operator and some numerical examples
Square of angular momentum operator\(\hat L^2\):
In cartesian co-ordinate system:
$$\hat L^2= \hat L\cdot \hat L = (\hat i \hat L_x+ \hat J \hat L_y+ \hat K \hat L_z)\cdot (\hat I \hat L_x+ \hat J \hat L_Y+\hat L_Y+ \hat K \hat L_Z)$$
$$\hat L^2= \hat L_x^2+ \hat L_y^2+ \hat L_z^2\dotsm(1)$$
Commutation relation between \(\hat L^2\) and component of \(\hat L\).
$$[\hat L_x, \hat L^2]\)= ?
$$[\hat L^2, \hat L_x]=0$$
$$[\hat L^2, \hat L_Y]=0$$
$$[\hat L^2, \hat L_z] =0$$
Hence square of angular momentum and component of angular momentum of a particle can be measured accurately and simultaneously.
Ladder Operator:
The operator of the form
$$\hat L_+= \hat L_x+ i\hat L_y$$
and
$$\hat L_- = \hat L_x - i\hat L_y $$ are called ladder operator.
Where \(\hat L_x\) and \(\hat L_y\) are x and y-component of angular momentum operator.
\(\hat L_+\) is known as raising operator because it raises the m^{th} level wave function to (m+1)^{th} level. \(\hat L_-\) is known as lowering operator because it lowers the \(m^{th}\) level wavefunction to \((m-1)^{th}\) level.
Q. Show that
$$(a) [\hat L_x, \hat L_y] = i\hat h \hat L_z$$
$$(b) [\hat L\times \hat L] = i\hbar\hat L$$ where \(\hat L\) is angular momentum operators.
$$(c) [\hat L_i, \hat L_j] = \sum_{ijk}i\hbar \hat L_k$$
Where, \(\sum_{ijk}= +1\) For even permutation
= -1 for odd permutation
=0 , i=j
$$[ \hat i = x \hat j= y , \hat k = \hat z ]$$
Proof: (b) \([ \hat L \times \hat L\)]
$$= [ \hat i \hat L_x+ \hat j \hat L_y+ \hat k \hat L_z] \times [ \hat i \hat L_x+ \hat j \hat L_y+ \hat k \hat L_z]$$
$$=\hat k \hat L_x \hat L_y- \hat j \hat L_x \hat L_z- \hat k \hat L_y \hat L_x + \hat i \hat L_y \hat L_z+ \hat j \hat L_z \hat L_x - i\hat L_z \hat L_y$$
$$= \hat i[ \hat L_y \hat L_z- \hat L_z \hat L_y)+ \hat j ( \hat L_z \hat L_x - \hat L_x \hat L_z ) + \hat k ( \hat L_x \hat L_y- \hat L_y \hat L_x)$$
$$= \hat i [ \hat L_y, \hat L_z] + \hat j [ \hat L_z, \hat L_x] + \hat k [ \hat L_x, \hat L_y]$$
$$= \hat i i\hbar \hat L_x+ \hat j i\hbar L_y+ \hat k i\hbar \hat L_z$$
$$= i\hbar ( \hat i \hat L_x+ \hat j \hat L_y+ \hat k \hat L_z)$$
$$= i\hbar \hat L $$
$$Proved$$
Again, (a) Alternatively, \( [ \hat L_x, \hat L_y] \psi\)
$$= \hat L_x \hat L_y \psi- \hat L_y \hat L_x \psi(1)$$
Again, $$\hat L_x \hat L_y \psi= (-i\hbar)\biggl(y\frac{\partial}{\partial z}- z\frac{\partial}{\partial y}\biggr) (-i\hbar)\biggl(z\frac{\partial }{\partial x} - x\frac{\partial}{\partial z}\biggr)\psi$$
$$= (-i\hbar)^2 \biggl(y\frac{\partial }{\partial z}- z \frac{\partial}{\partial Y}\biggr)\biggl[z\frac{\partial \psi}{\partial x}- x\frac{\partial \psi}{\partial z}\biggr]$$
$$=(-i\hbar)^2\biggl[y\frac{\partial}{\partial z} \biggl(z\frac{\partial \psi}{\partial x}- x\frac{\partial \psi}{\partial z}\biggr)- z\frac{\partial}{\partial y}\biggl(z\frac{\partial \psi}{\partial x}- x \frac{\partial \psi}{\partial z}\biggr)\biggr]$$
$$(-i\hbar)^2\biggl[y\frac{\partial \psi}{\partial x}+ yz \frac{\partial^2\psi}{\partial z \partial x}- yx\frac{\partial^2 \psi}{\partial Z^2}- Z^2 \frac{\partial^2 \psi}{\partial y \partial x}+ zx \frac{\partial ^2\psi}{\partial y \partial z}\biggr]$$
And, $$\hat L_y \hat L_x \psi= (-i\hbar)\biggl(z\frac{\partial}{\partial x}- x\frac{\partial }{\partial z}\biggr)(-i\hbar)\biggl(y\frac{\partial}{\partial z}- z\frac{\partial }{\partial y}\biggr)\psi$$
$$=(-i\hbar)^2 \biggl( z\frac{\partial}{\partial x}- x \frac{\partial }{\partial z}\biggr)\biggl[ y\frac{\partial \psi}{\partial z}- z\frac{\partial \psi}{\partial y}\biggr]$$
$$= (-i\hbar)^2\biggl[z\frac{\partial }{\partial x}\biggl(y\frac{\partial\psi}{\partial z}- \frac{x\partial}{\partial z}\biggl(y\frac{\partial \psi}{\partial z}- z\frac{\partial \psi}{\partial y}\biggr)$$
$$=(-i\hbar)^2\biggl[z\frac{\partial y}{\partial x}\frac{\partial\psi}{\partial z}+ zy\frac{\partial ^2\psi}{\partial x\partial z}- z\frac{\partial z}{\partial x}\frac{\partial \psi}{\partial y}- z^2 \frac{\partial^2 \psi}{\partial x \partial y}- \frac{x \partial y \partial \psi}{\partial z \partial z}- xy\frac{\partial^2\psi}{\partial Z^2}+ x\frac{\partial z}{\partial z } \frac{\partial \psi}{\partial y}+ xz \frac{\partial^2\psi}{\partial z\partial y}\biggr]$$
$$= (-ih)^2\biggl[ zy\frac{\partial ^2\psi}{\partial x\partial z}- z^2\frac{\partial^2\psi}{\partial x \partial y}- xy\frac{\partial^2\psi}{\partial z^2}+ x \frac{\partial \psi}{\partial y}+ xz\frac{\partial^2 \psi}{\partial z\partial y}\biggr]$$
Now,
$$\hat L_x \hat L_y \psi- \hat L_y \hat L_x \psi= $$
$$(-i\hbar)^2\biggl[y\frac{\partial \psi}{\partial x}+ yz\frac{\partial^2\psi}{\partial z \partial x}- yx\frac{\partial^2 \psi}{\partial z^2}- z^2 \frac{\partial^2\psi}{\partial y\partial x}+ zx\frac{\partial^2\psi}{\partial y \partial z}- zy \frac{\partial^2\psi}{\partial x\partial z}$$
$$+ \frac{Z^2 \partial^2 \psi}{\partial x\partial y}+ xy\frac{\partial^2\psi}{\partial z^2}- x\frac{\partial\psi}{\partial y}- xz\frac{\partial^2 \psi}{\partial z \partial y}\biggr]$$
$$=(-i\hbar)^2\biggl[y\frac{\partial \psi}{\partial x}- x\frac{\partial \psi}{\partial y}\biggr]$$
$$= (-i\hbar)^2\biggl(y\frac{\partial}{\partial x}- x\frac{\partial }{\partial y}\biggr)\psi$$
$$=(-i\hbar)^2 (-)\biggl[x\frac{\partial}{\partial y}- y\frac{\partial}{\partial x}\biggr) (i\hbar)\psi$$
$$= i\hbar \hat L_z \psi$$
$$\therefore[\hat L_x, \hat L_y] = i\hbar \hat L_z$$
$$Proved$$
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Operator formalism in Quantum mechanics
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.