Proof associated with Hermitian Operator

we discussed some of the importance proof of Hermitian operator. All the obserbable quantity in quantum mechanics are associated with corresponding operators. The expectation value of the quantity is always real and the corresponding operator associated with real sign vales is called hermitian operator.

Summary

we discussed some of the importance proof of Hermitian operator. All the obserbable quantity in quantum mechanics are associated with corresponding operators. The expectation value of the quantity is always real and the corresponding operator associated with real sign vales is called hermitian operator.

Things to Remember

\((a) \hat P_x = -i\hbar \frac{\partial }{\partial x}\) is Hermitian operator.

\((b) \biggl(\frac{-d}{dx}\biggr) \) is not Hermitain.

\((c) E_{op} = i\hbar \frac{\partial}{\partial t}\) is Hermitian.

 

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Proof associated with Hermitian Operator

Proof associated with Hermitian Operator

Show that:

\((a) \hat P_x = -i\hbar \frac{\partial }{\partial x}\) is Hermitian operator.

\((b) \biggl(\frac{-d}{dx}\biggr) \) is not Hermitain.

\((c) E_{op} = i\hbar \frac{\partial}{\partial t}\) is Hermitian.

Solution:

Let \(\psi(x) \) be valid wave function associated with a system.

Now, If \(\hat P_x\) is hermitian operator. Then,

$$\int_{-\infty}^\infty \psi^*(x)[\hat P_x \psi(x)]dx= < \hat P_x>$$

For any normalized wave function \(\psi\),

$$\int \psi^*\psi d\tau=1$$

Here, \(\hat P_x= -i\hbar \frac{\partial}{\partial x}\) and it's complex conjugate is

$$\hat P_x= i\hbar \frac{\partial}{\partial x}$$

differentating equation (1) with respect to 'x' on both side,

$$\frac{\partial}{\partial x}\int \psi^*\psi d\tau=0$$

$$or,\int \frac{\partial \psi^*}{\partial x}\psi d\tau= - \int \psi^*\frac{\partial\psi}{\partial x}d\tau$$

$$or, \int \psi^*\biggl(-i\hbar \frac{\partial \psi}{\partial x}d\tau= \int \biggl(-i\hbar \frac{\partial}{\partial x} biggr\psi )^* \psi d\tau$$

$$or, \int\psi^*(\hat P \psi)d\tau= \int (\hat p \psi)^* \psi d\tau$$

$$Or$$

\int \psi^*(x)[\hat P_x \psi(x)]dx= \int [\hat P_x \psi(x)]^* \psi(x) dx $$

Which show that \(\hat P_x= -i\hbar \frac{\partial}{\partial x}\) is hermitian operator.

Again, For any normalized wave function \(\psi\).

$$\psi^*(x)\psi(x)dx=1$$

Differentiating with respect to t, we get

$$\int \psi^* \frac{\partial \psi}{\partial t}dx+ \int \frac{\partial \psi^*}{\partial t}\psi dx=0$$

$$or,\; \; \int \psi^*\frac{\partial \psi}{\partial t} dx= -\int \frac{\partial \psi^*}{\partial t}\psi dx$$

$$or,\;\; \int \psi^*\biggl(i\hbar \frac{\partial \psi}{\partial t}\biggr)dx= \int \biggl(i\hbar \frac{\partial \psi}{\partial t}\biggr)^* \psi dx$$

$$or,\;\; \int \psi^*(\hat H \psi)dx= \int (\hat H \psi)^* \psi dx$$

Hence, \(\hat H = i\hbar \frac{\partial }{\partial t} \) is Hermitian

$$OR$$

$$\int \psi^*(r)[\hat H \psi(r)]d\tau= \int [\hat H \psi(r)]^* \psi(r)d\tau$$

$$\int \psi^*(r)[ \hat E_{op} \psi(r)]d\tau= \int [ \hat E_{op}\psi(r)]^* \psi(r)d\tau$$

Show that

\(\hat D= \frac{-d}{dx}\) is not Hermitian.

We have,

$$\int \psi^*\psi dx=1$$

Differentiating with respect to x

$$-\frac{d}{dx}\biggl(\int \psi^*\psi dx\biggr)=0$$

$$OR$$

$$\int \psi^*(x)[\hat D \psi(x)]dx= \int \psi^*(x)\biggl[\frac{-d}{dx} \psi(x)\biggr]dx$$

$$=(-1)\int_{-\infty}^\infty \psi^*(x)\frac{d}{dx}\psi(x)dx$$

$$=(-1)\biggl([\psi^*(x)\psi(x)]_{-\infty}^\infty+ \int_{-\infty}^\infty \frac{d\psi^*}{dx}\psi(x)dx\biggr)$$

$$=0+ (-1) \int_{-\infty}^\infty \frac{d}{dx}\psi^*(x)\psi(x)dx$$

$$=-\int_{-\infty}^\infty \biggl[\frac{-d}{dx}\psi(x)\biggr]^* \psi(x)dx$$

$$\therefore\;\; \int_{-\infty}^\infty \psi^*(x)[\hat D \psi(x)]dx\ne \int_{-\infty}^\infty [\hat D \psi(x)]^* \psi(x)dx$$

Hence, \(\hat D= \frac{-d}{dx}\) is not Hermitian.

$$[\hat A, \hat B^n ] = n[ A, B]B^{n-1}$$

Solution:

$$[\hat A, \hat B^n]= [\hat A, \hat B\cdot \hat B^{n-1}]$$

$$=\hat B[ \hat A, \hat B^{n-1}]+ [ \hat A, \hat B] \hat B^{n-1}\dotsm(1)$$

$$= [ \hat A, \hat B]\hat B^{n-1}+ \hat B[ \hat A \hat B \cdot \hat B^{n-2}]$$

$$=[\hat A, \hat B]\hat B^{n-1}+ \hat B\biggl( \hat B[\hat A, \hat B^{n-1}]+ [ \hat A, \hat B] \hat B^{n-2}\biggr)$$

$$=[\hat A, \hat B]\hat B^{n-1}+ \hat B^2[ \hat A, \hat B^{n-1}]+ [ \hat A, \hat B] \hat B^{n-1}$$

$$= 2[\hat A, \hat B] \hat B^{n-1}+ \hat B^2 [ \hat A, \hat B^{n-2}]$$

Continuing this process for r-times,

$$[\hat A, \hat B^n]= r[\hat A, \hat B]\hat B^{n-1}+ \hat B^r [\hat A, \hat B^{n-r}]$$

Put r=n-1

$$= (n-1) [ \hat A, \hat B] \hat B^{n-1}+ \hat B^{n-1}[\hat A, \hat B]$$

$$=n[\hat A, \hat B] \hat B^{n-1}- [ \hat A, \hat B] \hat B^{n-1}+ [ \hat A, \hat B]\hat B^{n-1}$$

$$= n[\hat A, \hat B] \hat B^{n-1}$$

$$\therefore\;\; [ \hat A, \hat B^n]= n[ \hat A, \hat B] \hat B^{n-1}$$

Non- Commutating Operators:

Let \(\hat A\) and \(\hat B\) be two operators such that, \(\hat A= \frac{d}{dx}\) and \(\hat B= \hat x\) then,

$$\hat A\hat B\psi= \frac{d}{dx}(\hat x \psi)= \psi+ x\frac{d\psi}{dx}$$

In this case the eigen value of two operator can not be measure simultaneously if one quantity is measure accurate then there will be greater error in another quantity.

and

$$\hat B \hat A \psi= x\frac{d\psi}{dx}$$

$$[\hat A\hat B- \hat B\hat A]\psi= \psi$$

$$\therefore\; [ \hat A \hat B- \hat B\hat A]=1\dotsm(1)$$

Any operator satisfying the equation (1) is called non-commutating.

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Operator formalism in Quantum mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.