Introduction of Operator and Commutation relation
We discussed about the operator and commutator in this chapter. An operator is a mathematical symbol representing a certain mathematical rules. For example: (1) Parity Operator (\(\hat \pi\)) reflects or inverts the sign of space co-ordinate of wavefunction. i.e. $$\hat \pi \psi(r)=\psi(-r)$$ $$\Rightarrow [\hat \pi \psi(x,y,z)= \psi(-x,-y,-z)]$$ If \(\hat A\) and \(\hat B\) are any two operators then the expression \(\hat A\hat B- \hat B\hat A\) is known as commutator of \(\hat A \) and \(\hat B\). It is also an operator. It is represented as $$\hat A\hat B-\hat B \hat A=[\hat A, \hat B]\dotsm(1)$$
Summary
We discussed about the operator and commutator in this chapter. An operator is a mathematical symbol representing a certain mathematical rules. For example: (1) Parity Operator (\(\hat \pi\)) reflects or inverts the sign of space co-ordinate of wavefunction. i.e. $$\hat \pi \psi(r)=\psi(-r)$$ $$\Rightarrow [\hat \pi \psi(x,y,z)= \psi(-x,-y,-z)]$$ If \(\hat A\) and \(\hat B\) are any two operators then the expression \(\hat A\hat B- \hat B\hat A\) is known as commutator of \(\hat A \) and \(\hat B\). It is also an operator. It is represented as $$\hat A\hat B-\hat B \hat A=[\hat A, \hat B]\dotsm(1)$$
Things to Remember
These are the properties of commutation relation
(1) For any two operator \(\hat A\) and \(hat B\):-
$$[\hat A, \hat B]= -[\hat B, \hat A]$$
(2) For any three operators:-
$$[\hat A, \hat B+ \hat C]=[\hat A, \hat B]+ [\hat A, \hat c]$$
(3) $$[\hat A+ \hat B, \hat C]= [\hat A, \hat C]+ [\hat B, \hat C]$$
(4) $$[\hat A, \hat B\hat C]= \hat B[\hat A, \hat c]+ [\hat A, \hat B]\hat C$$
(5) $$[\hat A\hat B, \hat C]= \hat A[\hat B,\hat C]+[\hat A,\hat C]\hat B$$
(6) $$[\hat A,\alpha \hat B]= \alpha [ \hat A, \hat B] $$
Where, \(\alpha\) is a constant numbers.
(7) 7. For any three operator
$$[\hat A, [\hat B, \hat C]]+ [\hat C, [\hat A, \hat B]]+ [\hat B[\hat C,\hat A]]=0 $$
This is called Jacobian identity.
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Introduction of Operator and Commutation relation
Operator
An operator is a mathematical symbol representing a certain mathematical rules.
For example:
(1) Parity Operator (\(\hat \pi\)) reflects or inverts the sign of space co-ordinate of wavefunction. i.e.
$$\hat \pi \psi(r)=\psi(-r)$$
$$\Rightarrow [\hat \pi \psi(x,y,z)= \psi(-x,-y,-z)]$$
(2) Identity operator (\(\hat I\)): The operator which leaves the wavefunction unchanged and its eigen value. i.e.
$$[\hat I \psi(r)=1\psi(r)]$$
(3) Null operator (\(\hat O\)): An operator which makes the wavefunction zero or it has eigen value is called null operator. i.e.
$$\hat O\psi(r)=0\psi(r)$$
$$[\hat O\psi(r)=0]$$
In quantum mechanics all the observables quantities corresponds to operators.
For example: Energy operator
$$E_{op}= i\hbar \frac{\partial}{\partial t}\; [Time\;Dependent]$$
$$\hat H=\frac{-\hbar^2}{2m}\nabla^2+\hat V(r)\; [ Time\; independent ]$$
Position Operator (\(\hat r\))= r
Linear momentum operator (\(\hat P_x)=-i\hbar\nabla\) etc.
Commutation Relation:
Commutator
If \(\hat A\) and \(\hat B\) are any two operators then the expression \(\hat A\hat B- \hat B\hat A\) is known as commutator of \(\hat A \) and \(\hat B\). It is also an operator. It is represented as
$$\hat A\hat B-\hat B \hat A=[\hat A, \hat B]\dotsm(1)$$
Properties of Commutation Relation:-
(1) For any two operator \(\hat A\) and \(hat B\):-
$$[\hat A, \hat B]= -[\hat B, \hat A]$$
Proof:- $$[\hat A, \hat B]= [\hat A\hat B- \hat B\hat A]$$
$$=-[\hat B\hat A- \hat A\hat B]$$
$$=-[\hat B, \hat A]$$
$$Proved$$
(2) For any three operators:-
$$[\hat A, \hat B+ \hat C]=[\hat A, \hat B]+ [\hat A, \hat c]$$
Proof:-
$$[\hat A, \hat B+ \hat C]=\hat A(\hat B+ \hat C)-(\hat B+ \hat c)\hat A$$
$$=\hat A\hat B+\hat A\hat C-\hat B\hat A-\hat C\hat A$$
$$=(\hat A \hat B- \hat B\hat A)+ (\hat A\hat C- \hat C\hat A)$$
$$=[\hat A,\hat B]+[\hat A, \hat C]$$
$$=Proved$$
(3) $$[\hat A+ \hat B, \hat C]= [\hat A, \hat C]+ [\hat B, \hat C]$$
Proof:
$$[\hat A+ \hat B, \hat C]= (\hat A+ \hat B) \hat C- \hat C(\hat A+ \hat B)$$
$$=\hat A\hat C+ \hat B\hat C- \hat C\hat A- \hat C\hat B$$
$$=\hat A\hat C- \hat C\hat A+ \hat B\hat C-\hat C\hat B$$
$$=[\hat A,\hat C]+ [\hat B,\hat C]$$
$$=Proved$$
(4) $$[\hat A, \hat B\hat C]= \hat B[\hat A, \hat c]+ [\hat A, \hat B]\hat C$$
Proof:
$$[\hat A, \hat B\hat C]= \hat A(\hat B\hat C)-(\hat B\hat C)\hat A$$
$$=\hat A\hat B\hat C - \hat B\hat C\hat A+ \hat B \hat A\hat C - \hat B\hat A\hat C$$
Adding and subtracting \(\hat B\hat A\hat C\)
$$=(\hat B\hat A\hat C- \hat B\hat C \hat A)+ \hat A \hat B\hat C- \hat B\hat A \hat C$$
$$=\hat B(\hat A \hat C- \hat C\hat A)+ ( \hat A \hat B- \hat B\hat A) \hat C$$
$$=\hat B[\hat A, \hat C]+[\hat A, \hat B]\hat C$$
$$Proved$$
(5) $$[\hat A\hat B, \hat C]= \hat A[\hat B,\hat C]+[\hat A,\hat C]\hat B$$
Proof: $$[\hat A\hat B, \hat C]= (\hat A\hat B)\hat C- \hat C(\hat A\hat B)$$
$$=\hat A \hat B\hat C- \hat C\hat A\hat B+ \hat A\hat C\hat B-\hat A \hat C\hat B$$
$$\hat A(\hat B\hat C-\hat C\hat B)+ (\hat A\hat C- \hat C\hat A)\hat B$$
$$=\hat A[\hat B,\hat C]+[\hat A,\hat C]\hat B$$
$$Proved$$
(6)$$[\hat A,\alpha \hat B]= \alpha [ \hat A, \hat B] $$
Where, \(\alpha\) is a constant numbers.
Proof:
$$[\hat A,\alpha \hat B]= \hat A(\alpha \hat B)- (\alpha \hat B) \hat A$$
$$=\alpha \hat A\hat B-\alpha \hat B\hat A$$
$$=\alpha (\hat A\hat B- \hat B\hat A)$$
$$\alpha[\hat A, \hat B]$$
$$Proved$$
(7)For any three operator
$$[\hat A, [\hat B, \hat C]]+ [\hat C, [\hat A, \hat B]]+ [\hat B[\hat C,\hat A]]=0 $$
This is called Jacobian identity.
Proof:
$$[\hat A, [\hat B, \hat c]]+ [\hat C, [\hat A,\hat B]]+ [\hat B, [\hat C, \hat A]]$$
$$[\hat A, \hat B\hat C- \hat C\hat B]+[\hat C, \hat A\hat B -\hat B\hat A]+[\hat B, \hat C\hat A- \hat A\hat C]$$
$$\hat A(\hat B\hat C-\hat C\hat B)- (\hat B\hat C- \hat C\hat B)\hat A+ \hat C(\hat A\hat B- \hat B\hat A)-(\hat A\hat B- \hat B\hat A)\hat C+\hat B(\hat C\hat A- \hat A\hat C)- (\hat C\hat A- \hat A\hat C)\hat B$$
$$=\hat A\hat B\hat C- \hat A\hat C\hat B-\hat B\hat C\hat A+ \hat C\hat B\hat A+ \hat C\hat A\hat B-\hat C\hat B\hat A-\hat A\hat B\hat C+\hat B\hat A\hat C+\hat B\hat C\hat A-\hat B\hat A\hat C-\hat C\hat A\hat B+\hat A\hat C\hat B$$
$$=0$$
$$Proved$$
Physical Meaning of commutator:
If two operators \(\hat A\) and \(\hat B\) are commutate, then they can be measured simultaneously Otherwise they are called canonically conjugate variables and can not be measured simultaneously.
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Operator formalism in Quantum mechanics
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.