Introduction of Operator and Commutation relation

We discussed about the operator and commutator in this chapter. An operator is a mathematical symbol representing a certain mathematical rules. For example: (1) Parity Operator (\(\hat \pi\)) reflects or inverts the sign of space co-ordinate of wavefunction. i.e. $$\hat \pi \psi(r)=\psi(-r)$$ $$\Rightarrow [\hat \pi \psi(x,y,z)= \psi(-x,-y,-z)]$$ If \(\hat A\) and \(\hat B\) are any two operators then the expression \(\hat A\hat B- \hat B\hat A\) is known as commutator of \(\hat A \) and \(\hat B\). It is also an operator. It is represented as $$\hat A\hat B-\hat B \hat A=[\hat A, \hat B]\dotsm(1)$$

Summary

We discussed about the operator and commutator in this chapter. An operator is a mathematical symbol representing a certain mathematical rules. For example: (1) Parity Operator (\(\hat \pi\)) reflects or inverts the sign of space co-ordinate of wavefunction. i.e. $$\hat \pi \psi(r)=\psi(-r)$$ $$\Rightarrow [\hat \pi \psi(x,y,z)= \psi(-x,-y,-z)]$$ If \(\hat A\) and \(\hat B\) are any two operators then the expression \(\hat A\hat B- \hat B\hat A\) is known as commutator of \(\hat A \) and \(\hat B\). It is also an operator. It is represented as $$\hat A\hat B-\hat B \hat A=[\hat A, \hat B]\dotsm(1)$$

Things to Remember

These are the properties of commutation relation

(1) For any two operator \(\hat A\) and \(hat B\):-

$$[\hat A, \hat B]= -[\hat B, \hat A]$$

(2) For any three operators:-

$$[\hat A, \hat B+ \hat C]=[\hat A, \hat B]+ [\hat A, \hat c]$$

(3) $$[\hat A+ \hat B, \hat C]= [\hat A, \hat C]+ [\hat B, \hat C]$$

(4) $$[\hat A, \hat B\hat C]= \hat B[\hat A, \hat c]+ [\hat A, \hat B]\hat C$$

(5) $$[\hat A\hat B, \hat C]= \hat A[\hat B,\hat C]+[\hat A,\hat C]\hat B$$

(6) $$[\hat A,\alpha \hat B]= \alpha [ \hat A, \hat B] $$

Where, \(\alpha\) is a constant numbers.

(7) 7. For any three operator

$$[\hat A, [\hat B, \hat C]]+ [\hat C, [\hat A, \hat B]]+ [\hat B[\hat C,\hat A]]=0 $$

This is called Jacobian identity.

 

 

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Introduction of  Operator and  Commutation relation

Introduction of Operator and Commutation relation

Operator

An operator is a mathematical symbol representing a certain mathematical rules.

For example:

(1) Parity Operator (\(\hat \pi\)) reflects or inverts the sign of space co-ordinate of wavefunction. i.e.

$$\hat \pi \psi(r)=\psi(-r)$$

$$\Rightarrow [\hat \pi \psi(x,y,z)= \psi(-x,-y,-z)]$$

(2) Identity operator (\(\hat I\)): The operator which leaves the wavefunction unchanged and its eigen value. i.e.

$$[\hat I \psi(r)=1\psi(r)]$$

(3) Null operator (\(\hat O\)): An operator which makes the wavefunction zero or it has eigen value is called null operator. i.e.

$$\hat O\psi(r)=0\psi(r)$$

$$[\hat O\psi(r)=0]$$

In quantum mechanics all the observables quantities corresponds to operators.

For example: Energy operator

$$E_{op}= i\hbar \frac{\partial}{\partial t}\; [Time\;Dependent]$$

$$\hat H=\frac{-\hbar^2}{2m}\nabla^2+\hat V(r)\; [ Time\; independent ]$$

Position Operator (\(\hat r\))= r

Linear momentum operator (\(\hat P_x)=-i\hbar\nabla\) etc.

Commutation Relation:

Commutator

If \(\hat A\) and \(\hat B\) are any two operators then the expression \(\hat A\hat B- \hat B\hat A\) is known as commutator of \(\hat A \) and \(\hat B\). It is also an operator. It is represented as

$$\hat A\hat B-\hat B \hat A=[\hat A, \hat B]\dotsm(1)$$

Properties of Commutation Relation:-

(1) For any two operator \(\hat A\) and \(hat B\):-

$$[\hat A, \hat B]= -[\hat B, \hat A]$$

Proof:- $$[\hat A, \hat B]= [\hat A\hat B- \hat B\hat A]$$

$$=-[\hat B\hat A- \hat A\hat B]$$

$$=-[\hat B, \hat A]$$

$$Proved$$

(2) For any three operators:-

$$[\hat A, \hat B+ \hat C]=[\hat A, \hat B]+ [\hat A, \hat c]$$

Proof:-

$$[\hat A, \hat B+ \hat C]=\hat A(\hat B+ \hat C)-(\hat B+ \hat c)\hat A$$

$$=\hat A\hat B+\hat A\hat C-\hat B\hat A-\hat C\hat A$$

$$=(\hat A \hat B- \hat B\hat A)+ (\hat A\hat C- \hat C\hat A)$$

$$=[\hat A,\hat B]+[\hat A, \hat C]$$

$$=Proved$$

(3) $$[\hat A+ \hat B, \hat C]= [\hat A, \hat C]+ [\hat B, \hat C]$$

Proof:

$$[\hat A+ \hat B, \hat C]= (\hat A+ \hat B) \hat C- \hat C(\hat A+ \hat B)$$

$$=\hat A\hat C+ \hat B\hat C- \hat C\hat A- \hat C\hat B$$

$$=\hat A\hat C- \hat C\hat A+ \hat B\hat C-\hat C\hat B$$

$$=[\hat A,\hat C]+ [\hat B,\hat C]$$

$$=Proved$$

(4) $$[\hat A, \hat B\hat C]= \hat B[\hat A, \hat c]+ [\hat A, \hat B]\hat C$$

Proof:

$$[\hat A, \hat B\hat C]= \hat A(\hat B\hat C)-(\hat B\hat C)\hat A$$

$$=\hat A\hat B\hat C - \hat B\hat C\hat A+ \hat B \hat A\hat C - \hat B\hat A\hat C$$

Adding and subtracting \(\hat B\hat A\hat C\)

$$=(\hat B\hat A\hat C- \hat B\hat C \hat A)+ \hat A \hat B\hat C- \hat B\hat A \hat C$$

$$=\hat B(\hat A \hat C- \hat C\hat A)+ ( \hat A \hat B- \hat B\hat A) \hat C$$

$$=\hat B[\hat A, \hat C]+[\hat A, \hat B]\hat C$$

$$Proved$$

(5) $$[\hat A\hat B, \hat C]= \hat A[\hat B,\hat C]+[\hat A,\hat C]\hat B$$

Proof: $$[\hat A\hat B, \hat C]= (\hat A\hat B)\hat C- \hat C(\hat A\hat B)$$

$$=\hat A \hat B\hat C- \hat C\hat A\hat B+ \hat A\hat C\hat B-\hat A \hat C\hat B$$

$$\hat A(\hat B\hat C-\hat C\hat B)+ (\hat A\hat C- \hat C\hat A)\hat B$$

$$=\hat A[\hat B,\hat C]+[\hat A,\hat C]\hat B$$

$$Proved$$

(6)$$[\hat A,\alpha \hat B]= \alpha [ \hat A, \hat B] $$

Where, \(\alpha\) is a constant numbers.

Proof:

$$[\hat A,\alpha \hat B]= \hat A(\alpha \hat B)- (\alpha \hat B) \hat A$$

$$=\alpha \hat A\hat B-\alpha \hat B\hat A$$

$$=\alpha (\hat A\hat B- \hat B\hat A)$$

$$\alpha[\hat A, \hat B]$$

$$Proved$$

(7)For any three operator

$$[\hat A, [\hat B, \hat C]]+ [\hat C, [\hat A, \hat B]]+ [\hat B[\hat C,\hat A]]=0 $$

This is called Jacobian identity.

Proof:

$$[\hat A, [\hat B, \hat c]]+ [\hat C, [\hat A,\hat B]]+ [\hat B, [\hat C, \hat A]]$$

$$[\hat A, \hat B\hat C- \hat C\hat B]+[\hat C, \hat A\hat B -\hat B\hat A]+[\hat B, \hat C\hat A- \hat A\hat C]$$

$$\hat A(\hat B\hat C-\hat C\hat B)- (\hat B\hat C- \hat C\hat B)\hat A+ \hat C(\hat A\hat B- \hat B\hat A)-(\hat A\hat B- \hat B\hat A)\hat C+\hat B(\hat C\hat A- \hat A\hat C)- (\hat C\hat A- \hat A\hat C)\hat B$$

$$=\hat A\hat B\hat C- \hat A\hat C\hat B-\hat B\hat C\hat A+ \hat C\hat B\hat A+ \hat C\hat A\hat B-\hat C\hat B\hat A-\hat A\hat B\hat C+\hat B\hat A\hat C+\hat B\hat C\hat A-\hat B\hat A\hat C-\hat C\hat A\hat B+\hat A\hat C\hat B$$

$$=0$$

$$Proved$$

Physical Meaning of commutator:

If two operators \(\hat A\) and \(\hat B\) are commutate, then they can be measured simultaneously Otherwise they are called canonically conjugate variables and can not be measured simultaneously.

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Operator formalism in Quantum mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.