Commutation Relation between position and linear momentum

Here we discussed about the Commutation Relation between position and linear momentum. Physical significance of it is Physical Significance: 1. One component of position and corresponding component of linear momentum of a particle can not be measured. 2. \(\hat x\) and \(\hat P_x\) can not have simultaneous eigen state. 3. The order of measurement is important in this case. 4. The measurement of x disturb the system for the measurement of \(\P_x\). So we can not measured \(\hat x\) and \(\hat P_x\) simultaneously and accurately.

Summary

Here we discussed about the Commutation Relation between position and linear momentum. Physical significance of it is Physical Significance: 1. One component of position and corresponding component of linear momentum of a particle can not be measured. 2. \(\hat x\) and \(\hat P_x\) can not have simultaneous eigen state. 3. The order of measurement is important in this case. 4. The measurement of x disturb the system for the measurement of \(\P_x\). So we can not measured \(\hat x\) and \(\hat P_x\) simultaneously and accurately.

Things to Remember

  • Commutation Relation between position and linear momentum$$[\hat y, \hat P_y]=i\hbar$$

    $$[\hat Z, \hat P_z]= i\hbar$$

    $$[\hat P_x, \hat x]= -\hbar $$ and so on.

  • $$ [\hat x, \hat P_x^n]= ni\hbar \hat P_x^{n-1}$$
  • \([\hat x^n, \hat P_x]= ni\hbar x^{n-1}\)
  •  $$[\hat x, \hat P_x^2] = 2i\hbar \hat P_x$$
  •  $$[\hat x, \hat P_x^3]= 3i\hbar \hat P_x^2$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Commutation Relation between position and linear momentum

Commutation Relation between position and linear momentum

Commutation Relation between position and linear momentum

$$[\hat y, \hat P_y]=i\hbar$$

$$[\hat Z, \hat P_z]= i\hbar$$

$$[\hat P_x, \hat x]= -\hbar $$ and so on.

Physical Significance:

1. One component of position and corresponding component of linear momentum of a particle can not be measured.

2. \(\hat x\) and \(\hat P_x\) can not have simultaneous eigen state.

3. The order of measurement is important in this case.

4. The measurement of x disturb the system for the measurement of \(\P_x\). So we can not measured \(\hat x\) and \(\hat P_x\) simultaneously and accurately.

Here \(\hat x\) and \(\hat P_x\) are said to be non-commutating operators. This is also consistent with Heisenberg uncertainty principle.

Q. \([\hat x,\hat P_y]\psi=?\)

Proof: $$[\hat x, \hat P_y]\psi= \hat x \hat P_y \psi-\hat P_y \hat x \psi$$

$$=x\biggl(-i\hat h \frac{\partial \psi}{\partial y}\biggr)-(-i\hbar)\frac{\partial}{\partial y}(x\psi)$$

$$=(-i\hbar)\biggl[x\frac{\partial \psi}{\partial y}-x\frac{\partial \psi}{\partial y}\biggr]$$

$$=0\psi$$

$$=0$$

Here, \(\hat x\) and \(\hat P_y\) can be measured accurately and simultaneously.

Similarly, $$[\hat x, \hat P_z]=0[\hat y, \hat P_x]=0, [\hat Z, \hat P_x]=0 \; and \; so \;on$$

Show that $$ (i) [\hat x, \hat P_x^n]= ni\hbar \hat P_x^{n-1}$$

$$(ii) [\hat x^n , \hat P_x]= ni\hbar \hat x^{n-1}$$

\(\Rightarrow\) Solution:

$$[\hat x, \hat P_x^n]=[\hat X, \hat P_x\cdot \hat P_x^{n-1}]$$

$$=\hat P_x[\hat x, \hat P_x^{n-1}]+ [\hat x, \hat P_x]\hat P_x^{n-1}$$

$$=\hat P_x[\hat x, \hat P_x^{n-1}]+i\hbar \hat P_x^{n-1}\dotsm(1)$$

$$=\hat P_x[\hat x, \hat P_x\cdot \hat P_x^{n-2}]+ [\hat x, \hat P_x]\hat P_x^{n-2}]+ i\hbar \hat P_x^{n-1}$$

$$=\hat P_x^2[\hat x, \hat P_x^{n-2}]+ i\hbar \hat P_x^{n-1}+i\hbar \hat P_x^{n-1}$$

$$=\hat P_x^2[\hat x, \hat P_x^{n-2}]++ 2i\hbar P_x^{n-1}\dotsm(2)$$

Repeating above process upto r-times [ iteration ]

$$=\hat P_x[\hat x, hat P_x^{n-r}]+ ri\hbar \hat P_x^{n-1}$$

Put r= n-1, we get

$$=\hat P_x^{n-1}[\hat x, \hat P_x]+ (n-1)i\hbar\hat P_x^{n-1}$$

$$=\hat P_x^{n-1}(i\hbar)+ (n-1)i\hbar \hat P_x^{n-1}$$

$$=i\hbar \hat P_x^{n-1}+ ni\hbar P_x^{n-1}-i\hbar P_x^{n-1}$$

$$[\hat x, \hat P_x^n]= ni\hbar P_x^{n-1}$$

$$Proved$$

Q. \([\hat x^n, \hat P_x]= ni\hbar x^{n-1}\)

Let \(\psi\) be the wave function associated with commutator \([\hat x^n, \hat P_x]\). Then,

$$[\hat x^n, \hat P_x]\psi= [\hat x^n \hat P_x- \hat P_x \hat x^n ]\psi$$

$$=\biggl[\hat x^n \biggl(-i\hbar \frac{\partial}{\partial x}\biggr)- \biggl(-i\hbar \frac{\partial}{\partial x}\biggr) \hat x^n\biggr] \psi$$

$$=(-i\hbar)\biggl[\hat x^n \frac{\partial x}{\partial x}-\frac{\partial}{\partial x}(\hat x^n \psi)\biggr]$$

$$=(-i\hbar)\biggl[\hat x^n \frac{\partial \psi}{\partial x}- \hat x^n \frac{\partial x}{\partial x}- n\hat x^{n-1}\psi\biggr]$$

$$=i\hbar n\hat x^{n-1}\psi$$

$$[\hat x^n, \hat P_x]= i\hbar n \hat x^{n-1}$$

$$Proved$$

Q. 1 $$[\hat x, \hat P_x^2] = 2i\hbar \hat P_x$$

Proof:

$$[\hat x, \hat P_x^2]= [\hat x \hat P_x,\cdot \hat P_x]$$

$$$$=\hat P_x[\hat x, \hat P_x]+[\hat x, \hat P_x]\hat P_x$$

$$=\hat P_x(i\hbar )+ (i\hbar ) \hat P_x$$

$$=2i\hbar \hat P_x$$

$$Proved$$

Q.2 $$[\hat x, \hat P_x^3]= 3i\hbar \hat P_x^2$$

Proof:

$$[\hat x, \hat P_x^3]= [\hat x, \hat P_x^2\cdot \hat P_x]$$

$$=\hat P_x^2(i\hbar)+ [\hat x, \hat P_x\hat P_x]\hat P_x$$

$$=i\hbar \hat P_x^2+ \biggl[\hat P_x[\hat x, \hat P_x]+[\hat x \hat P_x]\hat P_x\biggr]\hat P_x$$

$$=i\hbar \hat P_x^2 + [ \hat P_x i\hbar + i\hbar \hat P_x]\hat P_x$$

$$=i\hbar \hat P_x^2+ 2i\hbar \hat P_x^2$$

$$=3i\hbar \hat P_X^2$$

$$Proved$$

Q. $$[\hat r, \hat p]= ?$$

Let \(\psi(r)\) be the wave function associated with commutator \([\hat r, \hat P]\).

Now, $$[\hat r, \hat P] \psi= (\hat r\hat P- \hat P \hat r)\psi$$

$$=[r(-i\hbar\nabla)- (-i\hbar \nabla ) r]\psi$$

$$=(-i\hbar)[r\nabla \psi- \nabla ( r\psi)]$$

$$= -(i\hbar) [ r\nabla \psi- (\nabla r) \psi- r\nabla \psi]$$

$$=-i\hbar [ -(\nabla\cdot r)]\psi$$

$$= 3i\hbar \psi$$

$$\therefore\ ; [\hat r, \hat P] = 3i \hbar $$

$$proved$$

Q. $$[\hat P_x,\hat F(x)]= ?$$

$$[P_x, F(x)]\psi= [P_x F(x)- F(x) P_x]\psi$$

$$=\biggl[(-i\hbar)\frac{\partial}{\partial x}F(x)- F(x)(-i\hbar)\frac{\partial }{\partial x}\biggr]\psi$$

$$=(-i\hbar)\biggl[\frac{\partial}{\partial x} (F(x)\psi)- F(x) \frac{\partial \psi}{\partial x}\biggr]$$

$$=(-i\hbar)\biggl[F(x)\frac{\partial \psi}{\partial x}+ \psi\frac{\partial F(x)}{\partial x}- F(x)\frac{\partial \psi}{\partial x}\biggr]$$

$$=(-i\hbar)\frac{\partial F(x)}{\partial x}\psi$$

$$\therefore[P_x, F(x)]= -i\hbar \frac{\partial F(x)}{\partial x}$$

$$Proved$$

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Operator formalism in Quantum mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.