Commutation relation between position and angular momentum, linear momentum and angular momentum, components of angular momentum operators.

In this chapter we discussed about the Commutation relation between position and angular momentum, linear momentum and angular momentum, components of angular momentum operators.

Summary

In this chapter we discussed about the Commutation relation between position and angular momentum, linear momentum and angular momentum, components of angular momentum operators.

Things to Remember

  • $$[\hat z, \hat L_x]= \hat y i\hbar, [\hat z, \hat L_y]= -\hat x i\hbar, [\hat z, \hat L_z]=0$$

    Hence, same component of position and angular momentum can be measured accurately and simultaneous;y but different component can not be measured accurately and simultaneously.

  • \([\hat P_y, \hat L_y]=0=[\hat P_x, \hat L_z]\) and so on.

    Hence same component of linear momentum and angular momentum can be measured accurately and simultaneously.

  • $$\therefore\;\; [ \hat L_x, \hat L_y] = i\hbar \hat L_z$$

    Hence the different components of angular momentum o f particle can not be measured accurately and simultaneously. We could not have knowledge of a system by measuring individual component of angular momentum accurately and simultaneously.

     

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Commutation relation between position and angular momentum, linear momentum and angular momentum, components of angular momentum operators.

Commutation relation between position and angular momentum, linear momentum and angular momentum, components of angular momentum operators.

Commutation relation between position and Angular momentum.

$$[\hat x , \hat L_x]= [ \hat x , \hat y \hat P_z- \hat Z\hat P_y]$$

$$=[\hat x , \hat y \hat P_z]- [ \hat x, \hat z \hat P_y]$$

$$\hat y[\hat x, \hat P_z]+ [\hat x, \hat y]\hat P_z-- \hat z [ \hat x, \hat P_y] - [ \hat x, \hat z]\hat P_y$$

$$= 0+ 0-0-0$$

$$=0$$

Similarly, $$[\hat y, \hat L_y]= [ \hat z, \hat L_z]=0$$

Again,$$[\hat x, \hat L_y]= [ \hat x, \hat z \hat P_x- \hat x\hat P_z] = [\hat x, \hat z \hat P_x]- [\hat x , \hat x \hat P_z]$$

$$=\hat Z[ \hat x, \hat P_x]+ [ \hat x, \hat z ] \hat P_x - \hat x [ \hat x, \hat P_z]- [ \hat x , \hat x ]\hat P_z$$

$$= \hat z ( i \hbar ) + 0-0-0$$

$$=\hat Z(i\hbar)$$

$$\therefore\;\; [ \hat x , \hat L_y]= \hat z i\hbar$$

Similarly,

$$[\hat x, \hat L_z]= -\hat y i\hbar$$

$$[\hat y, \hat L_y]=0, [\hat y, \hat L_x]=-\hat z i\hbar, [\hat y, \hat L_z]= \hat x i\hbar$$

and

$$[\hat z, \hat L_x]= \hat y i\hbar, [\hat z, \hat L_y]= -\hat x i\hbar, [\hat z, \hat L_z]=0$$

Hence, same component of position and angular momentum can be measured accurately and simultaneous;y but different component can not be measured accurately and simultaneously.

Commutation relation between linear momentum and angular momentum:

\(\Rightarrow\)

\([\hat P_x, \hat L_x]=?\) \([\hat P_x, \hat L_y]=?\) \([\hat P_x, \hat L_z]=?\)

\([\hat P_y, \hat L_y]=?\) \([\hat P_y , \hat L_x]=?\) \([\hat P_y, \hat L_z]=?\)

\([\hat P_z, \hat L_z]=?\) \([\hat P_z, \hat L_x]=?\) \([\hat P_z, \hat L_y]=?\)

Solution: $$[\hat P_,x, \hat L_x]= [\hat P_x, \hat y P_z- \hat Z P_y]$$

$$=[\hat P_x, \hat y \hat P_z]-[\hat P_x, \hat z P_y]$$

$$=\hat y [ \hat P_x, \hat P_z]+ [\hat P_x, \hat y] \hat P_z- \hat Z [ \hat P_x, \hat P_y]- [\hat P_x, \hat z] \hat P_y$$

$$=0+0-0-0$$

$$=0$$

Similarly, \([\hat P_y, \hat L_y]=0=[\hat P_x, \hat L_z]\) and so on.

Hence same component of linear momentum and angular momentum can be measured accurately and simultaneously.

Again, $$[\hat P_x, \hat L_y]= [ \hat P_x, \hat Z\hat P_x- \hat x \hat P_z]$$

$$=[\hat P_x, \hat z\hat P_x]-[\hat P_x, \hat x \hat P_z]$$

$$= \hat Z[ \hat P_x, \hat P_x]+ [ \hat P_x, \hat Z] \hat P_x- \hat x [ \hat P_x, \hat P_x] - [ \hat P_x, \hat x ] \hat P_x$$

$$= 0+0-0- (i\hbar)\hat P_z$$

$$=-(-([\hat x , \hat P_x]))\hat P_z$$

$$=i\hbar \hat P_z$$

$$\therefore\;\; [\hat P_x, \hat L_y]= i\hbar \hat P_z$$

Similarly,

\([\hat P_x, \hat L_z]= -i\hbar \hat P_y, [\hat P_y, \hat L_z] = i\hbar \hat P_x\)

\([\hat P_y, \hat L_x]= i\hbar \hat P_z, [\hat P_x, \hat L_y]= i\hbar \hat P_z\)

\([\hat P_z, \hat L_x] = i\hbar \hat P_y, [\hat P_z, \hat L_y]=-\hbar \hat P_x\)

Hence different component of linear and angular momentum can not be measured accurately and simultaneously.

Commutation relation between components of angular momentum operator:

\(\rightarrow\) \([\hat L_x, \hat L_x]=0\; \; [\hat L_y, \hat L_x]= (-i\hbar \hat L_z)[ \hat L_z, \hat L_x]= (i\hbar)\hat L_y\)

\([\hat L_x, \hat L_y]= (i\hbar \hat L_z) [ \hat L_y, \hat L_y]=0\;\; [ \hat L_z, \hat L_y]= ( -i\hbar)\hat L_x\)

\([\hat L_x, \hat L_z] = ( -i\hbar \hat L_y) [ \hat L_y, \hat L_z] = ( i\hbar ) \hat L_x[ \hat L_z, \hat L_z] =0\)

Now, $$[\hat L_x, \hat L_y] = [\hat y \hat P_z- Z \hat P_y , \hat L_y]$$

$$= [ \hat y \hat P_z, \hat L_ y ] - [ \hat Z \hat P_y , \hat l_y]$$

$$= [ \hat y \hat P_z, \hat z \hat P_x- \hat x \hat P_z] - [ \hat z \hat P_y , \hat z \hat P_x- \hat x \hat P_z]$$

$$= [\hat y \hat P_z, \hat z \hat P_x] - [ \hat y \hat P_z, \hat x \hat P_z] - [ \hat z \hat P_y, \hat z \hat P_z] + [ \hat z \hat P_y, \hat x \hat P_z]$$

$$= [ \hat y \hat P_z, \hat z \hat P_z] + [ \hat z \hat P_y, \hat x \hat P_z]$$

$$= \hat x [ \hat y \hat P_z, \hat P_x] + [ \hat y \hat P_z, \hat Z_x] \hat P_x + \hat x [ \hat z \hat P_y, \hat P_z] + [ \hat Z \hat P_y \hat H] \hat P_z$$

$$= \biggl[ \hat y [ \hat P_z, \hat z ] + [ \hat y , \hat z ] \hat P_z \biggr] \hat P_x + \hat x \biggl[ \hat z [ \hat P_y, \hat P_z] + [ \hat z , \hat P_z ] \hat P_y\biggr]$$

$$= i\hbar \hat y \hat P_x+ \hat x ( i \hbar ) \hat P_y$$

$$=(-i\hbar) [ \hat x \hat P_y- \hat y \hat P_x] $$

$$= i\hbar \hat L_z$$

$$\therefore\;\; [ \hat L_x, \hat L_y] = i\hbar \hat L_z$$

Hence the different components of angular momentum o f particle can not be measured accurately and simultaneously. We could not have knowledge of a system by measuring individual component of angular momentum accurately and simultaneously.

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Operator formalism in Quantum mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.