Commutation relation between different components

Here we discussed about the commutation relation between energy and linear momentum and commutation relation between position operator and Hamiltonian operator. All the fundamental quantum-mechanical commutators involving the Cartesian components of position, momentum, and angular momentum are enumerated.

Summary

Here we discussed about the commutation relation between energy and linear momentum and commutation relation between position operator and Hamiltonian operator. All the fundamental quantum-mechanical commutators involving the Cartesian components of position, momentum, and angular momentum are enumerated.

Things to Remember

  • \([\hat x, \hat H] = i\hbar \frac{\hat P_x}{m}= i\hbar \frac{\partial \hat H}{\partial \hat P_x}\)
  • $$L_x= (\hat y \hat P_z- \hat z \hat P_y)= (-\hbar)[\hat y\frac{\partial }{\partial z}- \hat z \frac{\partial }{\partial y}]\dotsm(4(a))$$

    $$\hat L_y= ( \hat z \hat P_x- \hat x \hat P_z)= (-i\hbar ) \biggl[ \hat z \frac{\partial}{\partial x}- \hat x \frac{\partial }{\partial z}\biggr]\dotsm(4(b))$$

    $$\hat L_z= ( \hat x \hat P_y - \hat y \hat P_x) = (-i\hbar)\biggl[x\frac{\partial}{\partial y}- y\frac{\partial}{\partial x}\biggr]\dotsm(4(c))$$

    Equation (4) (a) (b) (c) gives the cartesian component of angular momentum operator, IN terms of position and linear momentum operators. 

     

  • $$\therefore [\hat P_x, \hat H] = - \hbar \frac{\partial V}{\partial x}= -i\hbar \frac{\partial H}{\partial x}$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Commutation relation between different components

Commutation relation between different components

Commutation Relation between energy and linear momentum.

Q. Show that, \([\hat P_x, \hat H] = -i\hbar \frac{\partial \hat V}{\partial x}=-i\hbar \frac{\partial \hat H}{\partial x}\)\

Proof:

L.H.S \([\hat P_x, \hat x] \psi(x)= \biggl[\hat P_x, \frac{\hat P_x^2}{2m}+ \hat V(x)\biggr] \psi(x)\)

Where, \(\hat H\)= Hamiltonian operator\( =\frac{\hat P_x^2}{2m}+ \hat V(x)\)

$$=\biggl[\hat P_x, \frac{\hat P_x^2}{2m}]\psi(H)+ [\hat P_x, \hat V(x)]\psi(x)$$

$$=\frac{1}{2m} [\hat P_x, \hat P_x^2] \psi(x)+ [ \hat P_x, \hat V(x)]\psi(x)$$

$$=\frac{1}{2m}[\hat P_x^3- \hat P_x^3)\psi(x)+ (\hat P_x\hat V(x)- \hat V(x)\hat P_x)\psi(x)$$

$$=0+ (-i\hbar)\biggl[\frac{\partial}{\partial x}[\hat V(x)\psi(x)]-\hat V(x)\frac{\partial}{\partial x}\psi(x)]$$

$$=(-i\hbar)\biggl[\frac{\partial}{\partial x} [ v(x)\psi(x)]- V(x)\frac{\partial}{\partial x}\psi(x)\biggr]$$

$$=(-i\hbar)\biggl[V(x)\frac{\partial \psi(x)}{\partial x}+\frac{\psi(x) \partial V(x)}{\partial x} - V(x) \frac{\partial \psi(x)}{\partial x}\biggr]$$

$$=\biggl[(-i\hbar)\frac{\partial V(x)}{\partial x}\biggr] \psi(x)$$

$$\therefore\; [\hat P_x, \hat x] = -i\hbar \frac{\partial V(x)}{\partial x}=-i\hbar\frac{\partial V}{\partial x}$$

Again,

$$\frac{\partial H}{\partial x}= \frac{\partial }{\partial x} \biggl[\frac{P_x^2}{2m}+ V(x)\biggr]$$

$$=0+\frac{\partial V}{\partial x} $$

$$\Rightarrow \frac{\partial H}{\partial x}= \frac{\partial v}{\partial x}$$

$$\therefore [\hat P_x, \hat H] = - \hbar \frac{\partial V}{\partial x}= -i\hbar \frac{\partial H}{\partial x}$$

$$Proved$$

The non-commutation of \([\hat P_x, \hat H]\) indicates that we can not measured inner momentum and Total energy of a particle accurately and simultaneously. [ For bounded particle ].

For free particle:

$$\Rightarrow \frac{\partial V}{\partial x}=0= \frac{\partial H}{\partial x}$$

$$\therefore\; [\hat P_x, \hat H] =0$$

For free particle, we can measure linear momentum and T.E accurately and simultaneously.

In General, \([\hat P, \hat H]= - \hbar \nabla V[ In \;3- dimension ]\)

Commutation Relation Between position operator and Hamiltonian operator.

Show that : \([\hat x, \hat H] = i\hbar \frac{\hat P_x}{m}= i\hbar \frac{\partial \hat H}{\partial \hat P_x}\)

\(\Rightarrow\) Solution:

Proof:

$$L.H.S \; [\hat x, \hat H]$$

$$=[\hat x, \frac{\hat P_x^2}{2m}+ \hat V(x)]$$

$$\biggl[\hat x, \frac{\hat P_x^2}{2m}\biggr]+ \biggl[\hat x, \hat V(x)\biggr]$$

$$=\frac{1}{2m}[\hat x, \hat P_x^2]+ [\hat x\hat V(x)- \hat V(x)\hat x]$$

$$=\frac{1}{2m}2i\hbar \hat P_x^{2-1}$$

$$=i\hbar \frac{\hat P_x}{m}$$

Again, \(\frac{\partial H}{\partial P_x}= \frac{\partial }{\partial P_x}\biggl[\frac{\hat P_x^2}{2m}+ V(x)\biggr]= \frac{\hat P_x}{m}\)

P.E is not a function of linear momentum.

$$\therefore\; \frac{\partial H}{\partial P_x}= \frac{\partial\hat P_x}{m}$$

$$\therefore\; [\hat x, \hat H] = i\hbar \frac{\hat P_x}{m}= i\hbar \frac{\partial \hat H}{2\hat P_x}$$ $$Proved.$$

In General, \([\hat r, \hat H] = i\hbar \frac{\partial \hat H}{\partial \hat P}\)

In general, position and T.E of particle can not be measured accurately and simultaneously.

Angular momentum Operator:

Cartesian co-ordinate system: Angular momentum of a particle is defined as moment of its linear momentum about given axis of rotation.

Mathematically,

$$\vec L= \vec r\times \vec p \dotsm(1)$$

The corresponding angular momentum operator is given by,

$$\hat L= \hat r\times \hat p\dotsm(2)$$

Where \(\hat r= \hat i \hat x+ \hat j \hat y + \hat k \hat z\) = Position operator

\(\hat i , \hat j \; and\; \hat k\) are three unit vectors.

\(\hat x, \hat y\) &\(hat z \)= Components of position operators.

\(\hat P = \hat i \hat P_x+ \hat j \hat P_y + \hat k \hat P_z \) = Linear momentum operator.

\(\hat P_x, \hat P_y\) and \( \hat P_z\) are component of linear momentum operators.

\(\hat L= \hat i \hat L_x+ \hat J \hat L_y+ \hat K \hat L_z\)= angular momentum operator.

$$\hat i\hat L_x+ \hat J \hat K_y+ \hat k \hat L_z= (\hat i \hat x+ \hat j \hat y+ \hat k \hat z)\times (\hat i \hat P_x+ \hat j \hat P_y+ \hat k \hat P_z)$$

$$=\hat k \hat x \hat P_y- \hat j \hat x \hat P_z- \hat k \hat y \hat P_x+ \hat i \hat y \hat P_z+ \hat j \hat z \hat P_x- i\hat z \hat P_y$$

$$=\hat i (\hat y \hat P_z- \hat z \hat P_y)+ \hat J (\hat z \hat P_x- \hat x \hat P_z)+ \hat K( \hat x \hat P_y- \hat y \hat P_x)\dotsm(3)$$

Comparing the coefficient of \(\hat i , \hat jj \) and \( \hat k\) on both sides,we get,

$$L_x= (\hat y \hat P_z- \hat z \hat P_y)= (-\hbar)[\hat y\frac{\partial }{\partial z}- \hat z \frac{\partial }{\partial y}]\dotsm(4(a))$$

$$\hat L_y= ( \hat z \hat P_x- \hat x \hat P_z)= (-i\hbar ) \biggl[ \hat z \frac{\partial}{\partial x}- \hat x \frac{\partial }{\partial z}\biggr]\dotsm(4(b))$$

$$\hat L_z= ( \hat x \hat P_y - \hat y \hat P_x) = (-i\hbar)\biggl[x\frac{\partial}{\partial y}- y\frac{\partial}{\partial x}\biggr]\dotsm(4(c))$$

Equation (4) (a) (b) (c) gives the cartesian component of angular momentum operator, IN terms of position and linear momentum operators.

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Operator formalism in Quantum mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.