Tunneling effect [ continue ]

Quantum tunnelling or tunneling refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount. This plays an essential role in several physical phenomena, such as the nuclear fusion that occurs in main sequence stars like the Sun.It has important applications to modern devices such as the tunnel diode, quantum computing, and the scanning tunnelling microscope. The effect was predicted in the early 20th century and its acceptance as a general physical phenomenon came mid-century. Tunnelling is often explained using the Heisenberg uncertainty principle and the wave–particle duality of matter. Pure quantum mechanical concepts are central to the phenomenon, so quantum tunnelling is one of the novel implications of quantum mechanics.

Summary

Quantum tunnelling or tunneling refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount. This plays an essential role in several physical phenomena, such as the nuclear fusion that occurs in main sequence stars like the Sun.It has important applications to modern devices such as the tunnel diode, quantum computing, and the scanning tunnelling microscope. The effect was predicted in the early 20th century and its acceptance as a general physical phenomenon came mid-century. Tunnelling is often explained using the Heisenberg uncertainty principle and the wave–particle duality of matter. Pure quantum mechanical concepts are central to the phenomenon, so quantum tunnelling is one of the novel implications of quantum mechanics.

Things to Remember

  1. $$\therefore\;= 16\frac{E}{V_0}\biggl(1- \frac{E}{V_0}\biggr)e^{-2k_2a}$$
  2. $$T= 16\frac {E}{V_0}\biggl(1- \frac{E}{V_0}\biggr)e^{-2a\sqrt{\frac{2m(V_0-E}{\hbar^2}}}$$

  3.  

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Tunneling effect [ continue ]

Tunneling effect [ continue ]

Cont..

Using boundary condition at x=a

$$\psi_{II}(x)|_{x=a}= \psi_{III}(x)|_{x=a}$$

$$Ce^{k_2a}+ De^{-k_2a}= Fe^{ik_1 a}\dotsm(15)$$

and,

$$\frac{d\psi_{II}(x)}{dx}\biggl|_{x=a}= \frac{d\psi_{III}(x)}{dx}\biggr|_{x=a}$$

$$Ce^{k_2a}- De^{-k_2 a}= \frac{ik_1}{k_2}Fe^{ik_1 a}\dotsm(16)$$

Adding (15) and (16)

$$\therefore\; C= \biggl(1+\frac{ik_1}{k_2}\biggr)\frac F2 e^{ik_1 a}\cdot e^{-k_2a}\dotsm(17)$$

Subtracting (16) from (15)

$$\therefore\; D= \biggl(1- \frac{-ik_1}{k_2}\biggr)\frac F2 e^{ik_1 a}\cdot e^{k_2 a}\dotsm(18)$$

Substituting from (17) and (18) in (13), we get,

$$A=\frac F4 e^{ik_1 a } e^{-k_2 a}\biggl(1+\frac{k_2}{ik_1}\biggr)\biggl(1+\frac{ik_1}{k_2}\biggr)+ \frac F4 e^{ik_1 a} e^{k_2a}\biggl(1-\frac{k_2}{|k_1}\biggr)\biggl(1-\frac{ik_1}{|k_1}\biggr)$$

$$=\frac F4 e^{ik_1 a}\biggl[\biggl(2+ (\frac{k_2}{ik_1}+ \frac{ik_1}{k_2})\biggr)e^{-k_2 a}+e^{k_2 a}\biggl(2-\biggl(\frac{k_2}{ik_1}+ \frac{ik_2}{k_2}\biggr)\biggr]$$

$$=\frac F4 e^{ik_1 a}\biggl[2(e^{k_2a}+ e^{-k_2a})- \biggl(\frac{k_2}{ik_1}+ \frac{ik_1}{k_2}\biggr)(e^{k_2a- e^{-k_2 a}})\biggr]$$

$$=Fe^{k_1a}\biggl[\frac{e^{k_2a}+ e^{-k_2 a}}{2}- \frac12 \biggl(\frac{k_2}{ik_1}+ \frac{ik_1}{k_2}\biggr)\biggl(e^{k_2a- e^{-k_2a}}{2}\biggr)\biggr]$$

$$= Fe^{ik_1 a}[ coshk_2a- \frac{(k_2^2- k_1^2)}{2ik_1k_2} sinhk_2 a]$$

$$\Rightarrow \frac FA= \frac{e^{-ik_1 a}}{coshk_2a- \frac{(k_2^2- k_1^2)}{2ik_1 k_2}sinhk_2a}\dotsm(19)$$

$$\biggl(\frac FA\biggr)^*= \frac{e^{ik_1 a}}{coshk_2a+ \frac{(k_2^2- k_1^2)}{2ik_1k_2}sinhk_2a}\dotsm(20)$$

Transmission coefficiet (T)= \(\frac{ J_{trans}(x)}{J_{inc}(x)}=\biggl|\frac{F}{A}\biggr|^2\)

$$\Rightarrow \biggl(\frac FA\biggr)\biggl(\frac FA\biggr)^*= \frac{1}{cosh^2k_2a+ \frac{(k_2^2-k_1^2)^2}{4k_1^2 k_2^2}sinh^2k_2a}$$

$$\therefore\; T= \frac{1}{1+ \frac{(k_2^2+ k_1^2)^2}{4k_1^2 k_2^2}sinh^2k_2a}\dotsm(21)$$

Similarly, reflection coefficient is,

$$R= \frac{ J_{ref}(x)}{J_{inc}(x)}$$

$$=\biggl|\frac BA\biggr|^2$$

$$= \biggl|\frac BF\biggr|^2\cdot \biggl|\frac FA\biggr|^2$$

Solving above equation, we get,

$$R= \frac{\frac{(K_2^2+ k_1^2)^2}{4k_1^2 k_2^2}\cdot sinh^2 k_2 a}{1+\frac{(k_2^2+ k_1^2)^2}{4k_1^2k_2^2}sinh^2k_2a}$$

$$\therefore\;\; R= \frac{(k_1^2+ k_2^2)^2sinh^2k_2a}{4k_1^2k_2^2+ (k_1^2+k_2^2)^2\cdot sinh^2_2 a}\dotsm(22)$$

In terms of \(V_0\) and E, substituting \(k_1^2=\frac{2mE}{\hbar^2}, k_2^2= \frac{2m(V_0- E)}{\hbar^2}\)

$$R= \frac{V_0^2 sinh^2k_2a}{4E(V_0-E)+ V_0^2sinh^2 k_2a}\dotsm(23)$$

$$and $$

$$ T= \frac{ 4E(V_0-E}{4E(V_0-E)+ V_0^2 sinh^2 k_2 a}\dotsm(24)$$

Special case:-

If \(k_2a\) is large:

$$sinhk_2a= \frac{e^{k_2a}- e^{-k_2a}}{2}$$

$$e^{-k_2a}\Rightarrow Too\; samll$$

$$\therefore\; sinhk_2a\approx\frac{e^{k_2a}}{2}$$

$$\therefore\; sinh^2k_2a\approx \biggl[\frac{e^{k_2a}}{2}\biggr]^2= \frac{e^{2k_2a}}{4}\dotsm(25)$$

Here,

$$T= \frac{1}{1+\frac{V_0^2sinh^2k_2a}{4E(V_0-E)}}\dotsm(24)$$

Neglecting 1 wirth respect to \(\frac{e^{2k_2a}}{4}\) in the denominator of equation (24) we get,

$$T\approx \frac{1}{\frac{V_0^2}{4E(V_0- E)}\frac{e^{2k_2a}}{4}}$$

$$\therefore\;= 16\frac{E}{V_0}\biggl(1- \frac{E}{V_0}\biggr)e^{-2k_2a}\dotsm(26)$$

$$OR$$

$$T= 16\frac {E}{V_0}\biggl(1- \frac{E}{V_0}\biggr)e^{-2a\sqrt{\frac{2m(V_0-E}{\hbar^2}}}$$

Physical significance:

1. In case of classical mechanics for \(E<V_0\), the transmission problem across potential barrier is zero. So x>0 in our case is classically forbidden region. But Quantum Mecahnically the value of transmission coefficient is not zero, it is finite as given by equation (24) and (26)

2. The value of transmission problem as due to wave nature of incident particle. This phenomenon of crossing high energy potential barrier by particle of low K.E is called Tunneling effect.

3. As the width of potential barrier ( a) increases, then probability of transmission decreases.

4. As the height of potential barrier increases, then the probability of transmission also decreases.

5. For particle of larger mass, the probability of transmission is samll.

In the limit of \(V_0\Rightarrow \infty\)

\(\therefore\; T\Rightarrow 0\)

If \(a\Rightarrow \infty\)

\(\therefore\; T\Rightarrow 0\)

\(m\Rightarrow large\; T\Rightarrow small\)

Reference:

  1. Mathews, P.M and K Venkatesan.A Text Book of Quantum Mechanics.New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E.Quantum Mechanics .New York: John Wiley, 1969.
  3. Prakash, S and S Salauja.Quantum Mechanics.Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh.Quantum Mechanics.Chand & Company Ltd., 2002.

Lesson

One Dimensional Quantum Mechanical Problems

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.