Reflection coefficient
In this note we calculate the value of R and T in the case of symmetric potential barrier of the form $$V(x)= V_0\; for \; -a\leq x\leq a$$ $$= 0\; otherwise$$ And also we found the relation between R and T as R+T=1.
Summary
In this note we calculate the value of R and T in the case of symmetric potential barrier of the form $$V(x)= V_0\; for \; -a\leq x\leq a$$ $$= 0\; otherwise$$ And also we found the relation between R and T as R+T=1.
Things to Remember
- $$B= \frac c2 \biggl[1-\frac{k_2}{k_1}\biggr]+\frac D2 \biggl[1+\frac{k_2}{k_1}\biggr]\dotsm(12)$$
- $$R+T=\dotsm(30)$$
- $$\biggl(\frac BA\biggr)^*= \frac{\frac i2 \biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)sink_2a}{cosk_2a+ \frac i2 \biggl(\frac{k_1}{k_2}+\frac{k_2}{k_1}\biggr)sink_2a}\dotsm(27)$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Reflection coefficient
Question:
- Calculate the value of R and T in the case of symmetric potential barrier of the form,
$$V(x)= V_0\; for \; -a\leq x\leq a$$
$$= 0\; otherwise$$
Solution:
Calculation of R
$$B= \frac c2 \biggl[1-\frac{k_2}{k_1}\biggr]+\frac D2 \biggl[1+\frac{k_2}{k_1}\biggr]\dotsm(12)$$
$$C= \biggl(1+\frac{k_1}{k_2}\biggr)\frac F2 e^{ik_1a}\cdot e^{-ik_2a}\dotsm(15)$$
$$D= biggl(1-\frac{k_1}{k_2}\biggr)\frac{F}{2}e^{ik_1a}e^{ik_2 a}$$
Using value of C and D in equation (12) we get,
$$B= \frac{F}{4}e^{ik_1a}\biggl[\biggl(1-\frac{k_2}{k_1}\biggr)\biggl(1+\frac{k_2}{k_2}\biggr)e^{-k_2a}+\biggl(1+\frac{k_2}{k_1}\biggr)\biggl(1-\frac{k_1}{k_2}\biggr)e^{ik_2 a}\biggr]$$
$$=\frac F4 e^{ik_1 a}\biggl[\biggl(1+\frac{k_1}{k_2}- \frac{k_2}{k_1}-1\biggr)e^{-ik_2a}+ \biggl(1-\frac{k_1}{k_2}+\frac{k_2}{k_1}-1\biggr)e^{ik_2a}\biggr]$$
$$=\frac F4 e^{ik_1 a}\biggl[\biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)\biggl(e^{-ik_2a}-e^{ik_2 a}\biggr)\biggr]$$
$$=\frac F4 e^{ik_1 a}\biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)(2i)\frac{[e^{ik_2a}- e^{-ik_2a}]}{2i}$$
$$\therefore\; B= \frac{-iF}{2}e^{ik_1a}\biggl(\frac{k_1}{k_2}- \frac{k_2}{k_1}\biggr)sink_2 a\dotsm(25)$$
From equation (17),
$$F=\frac{A}{e^{ik_1a}[cosk_2a- \frac i2\biggl(\frac{k_1}{k_2}+\frac{k_2}{k_1}\biggr)sink_2a]}$$
$$or,\; B=\frac{\frac{-i}{2}A\biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)sink_2a}{cosk_2a-\frac i2 \biggl(\frac{k_1}{k_2}+\frac{k_2}{k_1}\biggr)sink_2a}$$
$$or,\;\; \frac BA= \frac{(\frac{-i}{2})\biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)sink_2a}{cosk_2a- \frac{i}{2}\biggl(\frac{k_1}{k_2}+\frac{k_2}{k_1}\biggr)sink_2a}\dotsm(26)$$
$$and$$
$$\biggl(\frac BA\biggr)^*= \frac{\frac i2 \biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)sink_2a}{cosk_2a+ \frac i2 \biggl(\frac{k_1}{k_2}+\frac{k_2}{k_1}\biggr)sink_2a}\dotsm(27)$$
$$now,$$
$$R= \biggl|\frac BA\biggr|^2$$
$$=\biggl(\frac BA\biggr)^*\biggl(\frac BA\biggr)$$
$$R= \frac{\frac14\biggl(\frac{k_1}{k_2}-\frac{k_2}{k_1}\biggr)^2\cdot sin^2k_2a}{1+}\dotsm(28)$$
R in terms of E and \(V_0\),
$$R= \frac{V_0^2 sin^2 k_2 a}{4E(E-V_0)+V_0^2 sin^2 k_2 a}\dotsm(29)$$
From (22) and (29)
$$R+T=\dotsm(30)$$
Reference:
- Mathews, P.M and K Venkatesan.A Text Book of Quantum Mechanics.New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E.Quantum Mechanics .New York: John Wiley, 1969.
- Prakash, S and S Salauja.Quantum Mechanics.Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh.Quantum Mechanics.Chand & Company Ltd., 2002.
Lesson
One Dimensional Quantum Mechanical Problems
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.