Application of Boundary condition
Here we discussed about the ne of the main application of boundary condition is potential step. It is defined as the form of potential which has finite discontinuity at a point and it continuous upto infinity. Mathematically, \( V(x)=0 \; For \; x<0\) \(=V_0 \; For \; x\geq 0\dotsm(1)$$
Summary
Here we discussed about the ne of the main application of boundary condition is potential step. It is defined as the form of potential which has finite discontinuity at a point and it continuous upto infinity. Mathematically, \( V(x)=0 \; For \; x<0\) \(=V_0 \; For \; x\geq 0\dotsm(1)$$
Things to Remember
- The moving particle behave as wave and the motion of particle is described by time independent one-dimensional schrodinger equation.
$$\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$
- Incident probability current density:
$$\vec J_{inc}(x)=\frac{\hbar K_1}{m}|A|^2$$
- Reflected probability current density is,
$$\vec J_{ref}(x)=\frac{\hbar K_1}{m}|B|^2$$
- Transmitted probability current density is,
$$\vec J_{tans}(x)=\frac{\hbar k_2}{m}|c|^2$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Application of Boundary condition
Application of Boundary conditions:
Potential step:
It is defined as the form of potential which has finite discontinuity at a point and it continuous upto infinity.
Mathematically,
\( V(x)=0 \; For \; x<0\)
\(=V_0 \; For \; x\geq 0\dotsm(1)\)

Consider a flux of non interacting particles each having same mass 'm' and same K.E 'E' be incident on the potential step as shown in figure.
The moving particle behave as wave and the motion of particle is described by time independent one-dimensional schrodinger equation.
$$\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$
$$or,\;\; \frac{d^2 \psi(x)}{dx^2}+\frac{2m}{\hbar^2}[E-v(x)]\psi(x)=0\dotsm(2)$$
In region (I) \(\psi(x)=\psi_1(x), V(x)=0\) , equation (2) becomes,
$$or,\;\; \frac{d^2\psi_I(x)}{dx^2}+\frac{2mE}{\hbar^2}\psi_1(x)=0$$
$$or,\;\; \frac{d^2\psi_I(x)}{dx^2}+K_1^2\psi_1(x)=0\dotsm(3)$$
Where, \(K_1=\sqrt{\frac{2mE}{\hbar^2}}\dotsm(4)\), \(K_1\) real and +ve .
Solution of equation (3)is
$$\psi_I(x)= Ae^{ik_1x}+ Be^{-ik_1(x)}\dotsm(5)$$
Where, A and B are constant to be determined.
Case (I): For region (II) \(V(x)=V_0<E.\; \psi(x)= \psi_{II}(x)\)
Equation (2) becomes,
$$\frac{d^2\psi_{II}(x)}{dx^2}+\frac{2m(E-V_0)}{\hbar^2}\psi_{II}(x)=0$$
$$or,\; \frac{d^2\psi_{II}(x)}{dx^2}+ K_2^2 \psi_{II}(x)=0\dotsm(6)$$
Where, \(K_2= \sqrt{\frac{2m(E-V_0)}{\hbar^2}}\dotsm(7)\)
Solution of equation (6) is oscillatory and given by
$$\psi_{II}(x)= Ce^{ik_2x}+ De^{-ik_2 x}\Rightarrow ( reflected \; from \; x>0)$$
There is no any boundary in region II so value of D must be zero.
$$D=0$$
$$\therefore; \psi_{II}(x)= Ce^{ik_2 x}\dotsm(8)$$
Using boundary conditions at x=0, i.e.
$$\psi_I(x)|_{x=0}= \psi_{II}(x)|_{x=0}$$
$$A+B=C\dotsm(9)$$
And
$$\frac{d\psi_I(x)}{dx}\biggl|_{x=0}=\frac{d\psi_{II}(x)}{dx}\biggr|_{x=0}$$
$$\Rightarrow A-B=\frac{k_2}{k_1}\cdot C\dotsm(10)$$
Adding (9) and (10)
$$2A= c\biggl(1+\frac{k_2}{k_1}\biggr)$$
$$=\biggl(\frac{k_1+k_2}{k_1}\biggr)\cdot C$$
$$\Rightarrow \frac{C}{A}= \frac{2k_1}{k_1+k_2}\dotsm(11)$$
Dividing equation (9) by 'A' we get,
$$1+\frac{B}{A}= \frac{C}{A}$$
$$or,\; \frac{B}{A}=\frac{2k_1}{k_1+k_2}-1$$
$$=\frac{2k_1-k_1-k_2}{k_1+k_2}$$
$$\Rightarrow \frac{B}{A}=\frac{k_1-k_2}{k_1+k_2}\dotsm(12)$$
Probability current density in region \(I^{st}\; (x_0<0)\)
$$J_1(x)=\frac{\hbar}{2im}\biggl[\psi_I^*(x)\frac{d\psi_I(x)}{dx}-\psi_I(x)\frac{d\psi_I^*(x)}{dx}\biggr]$$
$$=\frac{\hbar}{2im}(A^*e^{-ik_1 x}+ B^* e^{ik_1 x})\frac{d}{dx}[Ae^{ik_1 x}+ Be^{-ik_1 x}]- ( Ae^{ik_1 x}+ Be^{-ik_1 x})\frac{d}{dx}[A^* e^{-ik_1 x}+B^*e^{ik_1 x}]$$
$$=\frac{\hbar}{2im}ik_1[(A^*e^{-ik_1x}+B^*e^{ik_1x})(Ae^{ik_1x}-Be^{-ik_1 x})+ (Ae^{ik_1 x}+ Be^{-ik_1 x})(A^* e^{-ik_1 x}-B^*e^{ik_1x})]$$
$$=\frac{\hbar ik_1}{2im}[|A|^2-A^*Be^{-2ik_1 x}+ B^*Ae^{2ik_1 x}-|B|^2 + |A|^2- AB^* e^{2ik_1 x}+ BA^*e^{-2ik_1x}\cdot |B|^2]$$
$$=\frac{\hbar k_1}{m}|A|^2+\biggl[\frac{-\hbar k_1}{m}|B|^2\biggr]$$
$$\vec J_1(x)= \vec J_{inc}(x)+ \vec J_{ref}(x)$$
Where incident probability current density is,
$$\vec J_{inc}(x)=\frac{\hbar K_1}{m}|A|^2$$
And reflected probability current density is,
$$\vec J_{ref}(x)=\frac{\hbar K_1}{m}|B|^2\dotsm(13)$$
Similarly, transmitted probability current density is,
$$\vec J_{tans}(x)=\frac{\hbar k_2}{m}|c|^2\dotsm(14)$$
Reference:
- Mathews, P.M and K Venkatesan.A Text Book of Quantum Mechanics.New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E.Quantum Mechanics .New York: John Wiley, 1969.
- Prakash, S and S Salauja.Quantum Mechanics.Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh.Quantum Mechanics.Chand & Company Ltd., 2002.
Lesson
One Dimensional Quantum Mechanical Problems
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.