Superposition of plane waves

Here we discussed about the superposition of infinite number of plane waves. And also we show \(\Delta x\cdot \Delta k> 1 \) from the superposition of infinite number of plane waves.

Summary

Here we discussed about the superposition of infinite number of plane waves. And also we show \(\Delta x\cdot \Delta k> 1 \) from the superposition of infinite number of plane waves.

Things to Remember

  • $$\psi (x,t)= \sum_{i=1}^\infty A_i e^{i(k_i x- \omega_i t)}\dotsm(1)$$
  •  A(k) in the form of Gaussian distribution

    $$A(k)= e^{-\sigma(k-k_0)^2}\dotsm(4)$$

  • $$\int_{-infty}^\infty e^{-\alpha x^2}=\sqrt{\frac{\pi}{\alpha}}$$
  • The width of wave packet in position space corresponds to value of x at which \(|\psi(x,0)^2|^2\) becomes \(\frac1e\times\) its maximum value.

 

 

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Superposition of plane waves

Superposition of plane waves

Show that \(\Delta x\cdot \Delta k> 1 \) from the superposition of infinite number of plane waves.

For the construction of wave packet having a single peak we take large number of waves having different amplitude, frequency and wave number

According to principle of superposition

$$\psi (x,t)= \sum_{i=1}^\infty A_i e^{i(k_i x- \omega_i t)}\dotsm(1)$$

For chorent superposition of infinite wave. We write

$$\psi (x,t)= \int A(k) e^{i(kx-\omega t)}dk\dotsm(2)$$

At t=0

$$\psi (x,0)= \int_{-\infty}^\infty A(x)e^{ikx} dk\dotsm(3)$$

We select A(k) in the form of Gaussian distribution

$$A(k)= e^{-\sigma(k-k_0)^2}\dotsm(4)$$

Where, \(\sigma\) is the parameter, k is variable and \(k_0\) is constant. The shape of A(k) is symmetric.

Substituting equation (4) to (3)

$$\psi(x,0)= \int_{-\infty}^{\infty} e^{-\sigma(k-k_0)^2} e^{ikx}\cdot dk$$

Put ,

$$(k-k_0)= k'$$

$$\Rightarrow dk= dk'$$

$$k= k_0+ k'$$

When,

$$k=-\infty\Rightarrow k'= -\infty$$

$$k=+\infty \Rightarrow k'= +\infty$$

Now,

$$\psi (x,0)= \int_{-\infty}^{\infty} e^{-\sigma k'^2} e^{ik_0 x} e^{ik'x} \cdot dk'$$

$$=e^{ik_0 x} \int_{-\infty}^\infty e^{-\sigma k'^2+ ik'x} dk'$$

$$\psi(x,0)= e^{ik_0 x} \int_{-\infty}^{\infty} e^{-\sigma \biggl[ k'^2-2k'\cdot \frac{ix}{2\sigma}+(\frac{ix}{2\sigma})^2\biggr]}+ e^{\sigma\biggl(\frac{ix}{2\sigma}\biggr)^2} dk'$$

$$=e^{ik_0 x} e^{\frac{-x^2}{4\sigma}} \int_{-\infty}^\infty e^{-\sigma \biggl( k'-\frac{ix}{2\sigma}\biggr)^2}dk'$$

We have from standard integral,

$$\int_{-infty}^\infty e^{-\alpha x^2}=\sqrt{\frac{\pi}{\alpha}}$$

$$\therefore \; \psi (x,0) = \sqrt{\frac{\pi}{\sigma}} e^{\frac{-x^2}{4\sigma} }e^{ik_0 x}\dotsm(5)$$

Now, probability density function of wave packet is

$$|\psi(x,0)|^2= \psi_{(x,0)}^* \psi_{(x,0)}$$

$$= \biggl(\sqrt{\frac{\pi}{\sigma}}\biggr)^2\biggl(e^{\frac{-x^2}{2\sigma}}\biggr)^2 e^{-ik_0 x} e^{ik_0 x}$$

$$|\psi (x,0)|^2= \frac{\pi}{\sigma}e^{-\frac{x^2}{2\sigma}}\dotsm(6)$$

$$|A(k)|^2= e^{-2\sigma (k- k_0)^2}\dotsm(7)$$

The width of wave packet in position space corresponds to value of x at which \(|\psi(x,0)^2|^2\) becomes \(\frac1e\times\) its maximum value.

$$\frac{1}{e}\times \frac{\pi}{\sigma}=|\psi(x,0)|^2$$

$$or, \; e^{-1} \frac{\pi}{\sigma}= \frac{\pi}{\sigma} e^{-x_1^2}{2\sigma}$$

$$or,\;\; x_1=\pm \sqrt{ 2\sigma}$$

$$\therefore \Delta x= 2x_1= 2\sqrt{2\sigma}\dotsm(8)$$

For the value of \(\Delta k\)

$$\frac1e \times 1= e^{-2\sigma\cdot k_1^2}$$

Where, \(k_1= (k-k_0)\)

$$\Rightarrow k_1= \pm \frac{1}{\sqrt{2\sigma}}$$

$$\therefore \Delta k= \frac{2}{\sqrt{2\sigma}}\dotsm(9)$$

$$\Delta x\cdot \Delta k= 2\sqrt{2\sigma}\cdot \frac{2}{\sqrt{2\sigma}}$$

$$\therefore \Delta x\cdot \Delta k=4> 1$$

We have,

$$\Delta k= \frac{\Delta P_x}{\hbar}$$

$$or,\;\; \Delta x\cdot \Delta P_x = 4\hbar > \frac{\hbar}{2}$$

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Introductory Wave Mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.