Particles wave packet spreads in time
We finally get a conclusion that the wave packet of light wave ( photon ) propagates without distortion (shape of wave packet remain same). That means width of wave packet of free particle ( matter ) changes with time during its propagation. [ For particles wave packet spreads in time ].
Summary
We finally get a conclusion that the wave packet of light wave ( photon ) propagates without distortion (shape of wave packet remain same). That means width of wave packet of free particle ( matter ) changes with time during its propagation. [ For particles wave packet spreads in time ].
Things to Remember
-
$$\psi(x,t)= \int_{-\infty}^\infty e^{-\sigma(k-k_0)^2} e^{i(kx-\omega(k_0)t-(k-k_0)tv_g}dk$$
$$=\int_{-\infty}^\infty e^{-\sigma (k-k_0)^2} e^{i(kx-\omega t v_g)} e^{i(k_0tv_g-\omega (k_0 t))}dk$$
At t=0
$$\psi (x,0)= \int_{-\infty}^\infty e^{-\sigma(k-k_0)^2 e^{ikx}}dk$$
For \(t\ne 0\)
\(\psi(x,t)=\psi(x-V_gt, t)= \psi (x- (t,t))\)
$$x=v_g\cdot t$$
From above equation it has been seen that form of wave packet for photon remains unchanged.
-
For free particle the width of wave packet increases with time
$$\Delta x= 2\sigma ^\frac12 \sqrt{2\sqrt{\frac{1+\beta^2 t^2}{\sigma^2}}}$$
i.e Vacuum acts as dispersive medium of propagation of wave pack for free particle .
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Particles wave packet spreads in time
Particles wave packet spreads in time
Show that width of wave packet of free particle ( matter ) changes with time during its propagation.
The form of time dependent wave packet for any particle is given by
$$\psi (x,t)= \int_{-\infty}^\infty A(k)e^{i(kx-\omega(k)t}dk\dotsm(1)$$
Where, A(k) is amplitude of wave packet taken as Gaussian.
$$A(k)= e^{-\sigma (k-k_0)^2}\dotsm(2)$$
To observe effect of propagation we must expand \(\omega(k)\) around \(k_0\). For simplicity of calculation we use Tyler series expansion.
$$\omega(k)= \omega (k_0)+ \frac{(k-k_0)'}{1!}\frac{d\omega}{dk}|_{k=k_0}+\frac{(k-k_0)^2}{2!}\frac{d^2\omega}{dk^2}|_{k=k_0}+\dotsm$$
$$=\omega(k_0)+ (k-k_0)\alpha+ (k-k_0)^2\beta+\dotsm$$
Where, \(\alpha= \frac{d\omega}{dk}|_{k=k_0}\) and \(\beta=\frac{d^2\omega}{2dk^2}|_{k=k_0}\)
In case of photon
$$E=\hbar\omega$$
$$=\frac{h}{2\pi}2\pi\nu$$
$$=\frac{h}{2\pi} 2\pi \frac{c}{\lambda}$$
$$=\frac{hck}{2\pi}$$
$$\omega= \frac{hck}{2\pi \hbar}$$
$$=\frac{hck}{2\pi \frac{h}{2\pi}}$$
$$\therefore \omega= ck\dotsm(4)$$
In case of photon \(\omega\propto k\) ( \(\omega\) is linear function of k)
$$\alpha=\frac{d\omega}{dk}|_{k=k_0}$$
$$or,\;\; \frac{d(ck)}{dk}\biggl|_{k=k_0}= c$$
\(\alpha= c = V_g=\) Group velocity
$$\beta=\frac{d^2\omega}{dk^2}\biggl|_{k=k_0}$$
$$=\frac{d}{dk}\biggl[\frac{d}{dk}(ck)\biggr]\biggl|_{k=k_0}$$
$$=\frac{d}{dk}(c)\biggl|_{k=k_0}$$
$$\therefore \beta=0$$
For photon equation (3) becomes,
$$\omega(k)= \omega(k_0)+ (k-k_0) V_g\dotsm(5)$$
Using (2) and (5) in equation (1)
$$\psi(x,t)= \int_{-\infty}^\infty e^{-\sigma(k-k_0)^2} e^{i(kx-\omega(k_0)t-(k-k_0)tv_g}dk$$
$$=\int_{-\infty}^\infty e^{-\sigma (k-k_0)^2} e^{i(kx-\omega t v_g)} e^{i(k_0tv_g-\omega (k_0 t))}dk$$
At t=0
$$\psi (x,0)= \int_{-\infty}^\infty e^{-\sigma(k-k_0)^2 e^{ikx}}dk$$
For \(t\ne 0\)
\(\psi(x,t)=\psi(x-V_gt, t)= \psi (x- (t,t))\)
$$x=v_g\cdot t$$
From above equation it has been seen that form of wave packet for photon remains unchanged.
i.e The peak of wave packet travels a distance \(x= V_g\cdot t\)
There is no any dispersion of wave packet for photon.
In case of free particle (non -relativistic ):
$$ E=\frac{p^2}{2m}$$
$$=\frac{hbar^2 k^2}{2m}$$
$$or, \; \; \hbar \omega= \frac{\hbar^2 k^2}{2m}$$
$$\therefore \omega= \frac{\hbar k^2}{2m}\dotsm(4)$$
$$\alpha=\frac{d\omega}{dk}\biggl|_{k=k_0}$$
$$=\hbar \frac{2k}{2m}\biggl|_{k=k_0}$$
$$=\frac{\hbar k_0}{m}$$
$$=\frac{p}{m}$$
$$=V_g$$
IN this case \(\alpha \) is also equals to group velocity.
$$\beta=\frac12 \frac{d^2\omega}{dk^2}\biggl|_{k=k_0}$$
$$=\frac12 \frac{d^2}{dk^2}\biggl(\frac{\hbar k^2}{2m}\biggr)$$
$$=\frac12 \frac{d}{dk}\biggl(\frac{\hbar 2k}{2m}\biggr)$$
$$=\frac{\hbar}{2m}\ne 0$$
Now equation (5) in this case become not equal to zero
$$\omega(k)=\omega(k_0)+(k-k_0)V_g+(k-k_0)^2\beta\dotsm(5)$$
Substituting (2) and (5) in equation (1)
$$\psi(x,t)=\int_{-\infty}^\infty e^{-\sigma(k-k_0)^2 } e^{i[ kx-(\omega(k_0)+(k-k_0)v_g+(k-k_0)^2\beta)t]}dk$$
$$\int_{-\infty}^{\infty} e^{-\sigma(k-k_0)^2}e^{i[ kx-\omega(k_0)t-(k-k_0)v_gt-(k-k_0)^2\beta t]}dk$$
Put \(k-k_0=k'\)
$$\psi(x,t)=\int_{-\infty}^\infty e^{-\sigma k'^2 } e^{i[k'x+k_0 x- \omega (k_0)t-k'v_g t- k'^2\beta t]}dk'$$
$$=\int_{-\infty}^\infty e^{-(\sigma+i\beta t)k'^2+k'[i(x-v_g t)]} e^{i[k_0 x- \omega (k_0)t]}dk'$$
$$=e^{i(k_0 x-\omega(k_0)t} \int_{-\infty}^\infty e^{-(\sigma+\beta i t)k'^2+ik'(x-v_g t)}dk'$$
The form of above integral is same as
$$\int_{-\infty}^\infty e^{-\sigma k'^2+ik'x} dx'=\sqrt{\frac{\pi}{\sigma}}$$
$$\therefore \psi(x,t)=\sqrt{\frac{\pi}{\sigma+i\beta t}}\cdot e^{i(k_0x-\omega(x_0)t)} e^{\frac{-(x-v_g t)^2}{4(\sigma+ i\beta t)}}$$
The probability density corresponding to above wave packet is
$$|\psi(x,t)|^2=\psi (x,t)^* \psi(x,t)$$
$$=\sqrt{\frac{\pi^2}{(\sigma - i\beta t)(\sigma+ i\beta t)}} e^0 e^{-\biggl[\frac{(x-v_g t)^2}{4(\sigma+ i\beta t)}\times \frac{(x-V_g t)^2}{4(\sigma-i\beta t)}\biggr]}$$
$$=\sqrt{\frac{\pi^2}{\sigma^2+\beta^2 t^2}} e^{-\frac{(x-v_gt)^2}{4}\biggl[\frac{\sigma+i\beta+\sigma- i\beta t}{\sigma^2+\beta^2t^2}\biggr]}$$
$$=\sqrt{\frac{\pi^2}{\sigma^2+\beta^2 t^2}} e^{-\frac{(x-v_g t)^2 2\sigma}{4(\sigma^2+\beta^2t^2})}$$
in this case \(\Delta x= 2\sqrt{2 \sqrt{\sigma^2 + \beta^2 t^2}}\)
For free particle the width of wave packet increases with time
$$\Delta x= 2\sigma ^\frac12 \sqrt{2\sqrt{\frac{1+\beta^2 t^2}{\sigma^2}}}$$
i.e Vacuum acts as dispersive medium of propagation of wave pack for free particle .
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Introductory Wave Mechanics
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.