Derivation for Group velocity

In this chapter we derived the expression for the phase and group velocity in different form. The phase velocity of modulated amplitude or amplitude of wave packet is known as group velocity. Wheres the velocity of complete wave profile is known as phase velocity or it is also defined as the speed of constant phase on the wave.

Summary

In this chapter we derived the expression for the phase and group velocity in different form. The phase velocity of modulated amplitude or amplitude of wave packet is known as group velocity. Wheres the velocity of complete wave profile is known as phase velocity or it is also defined as the speed of constant phase on the wave.

Things to Remember

  • $$= A sin\biggl[\biggl(k+\frac{\Delta k}{2}\biggr)x-\biggl(\omega+\frac{\Delta \omega}{2}\biggr)t\biggr]$$

  • $$A= 2a cos\biggl(\frac{\Delta k}{2}x-\frac{\Delta\omega}{2}t\biggr)$$
  • $$\therefore\; V_g= \frac{dE}{dP}$$
  • $$V_g= V_{ph}+ p \frac{d V_{ph}}{dp}$$

  • $$V_g= V_{ph}-\lambda \frac{dV_{ph}}{d\lambda}$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Derivation for Group velocity

Derivation for Group velocity

Derivation for the group velocity:

For simplicity of calculation we take two sine-wave having same amplitude 'a', wave number k and k+\(\Delta\)k and angular frequency \(\omega\) and \(\omega+\Delta\omega\) respectively travelling along x-axis. i.e.

$$\psi_k (x,t)= a sin(kx-\omega t)\dotsm(1)$$

$$\psi_{k+\Delta k}(x,t)= asin [ (k+\Delta k)x- (\omega+\Delta \omega)t]\dotsm(2)$$

According to the principle of superposition the resultant wave is given by

$$\psi (x,t)=\psi_k(x,t)+\psi_{k+\Delta k}(x,t)$$

$$=a\biggl[ 2cos (\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t) sin\biggl((k+\frac{\Delta k}{2})x-(\omega t+\frac{\Delta \omega}{2})t\biggr)\biggr]$$

$$= A sin\biggl[\biggl(k+\frac{\Delta k}{2}\biggr)x-\biggl(\omega+\frac{\Delta \omega}{2}\biggr)t\biggr]\dotsm(3)$$

Where,

$$A= 2a cos\biggl(\frac{\Delta k}{2}x-\frac{\Delta\omega}{2}t\biggr)\dotsm(4)$$

Equation (3) gives resultant wave. Equation (4) gives modulated amplitude of resultant wave.

Fig: Wave packet
Fig: Wave packet

The phase velocity of modulated amplitude is given by,

$$V_g= \frac{\frac{\Delta \omega}{2}}{\frac{\Delta k}{2}}$$

$$=\frac{\Delta\omega}{\Delta k}\dotsm(5)$$

If we add infinite number of wave for the complete construction of wave packet then the group velocity is written as,

$$V_g= \lim_{\Delta k\to 0} \frac{\Delta\omega}{\Delta k}$$

$$V_g= \frac{d\omega}{dk}\dotsm(6)$$

Group velocity can also be defined as the rate of change of angular frequency with the wave number.

Derivation of other form of group velocity :

We have, $$v_g=\frac{d\omega}{dk}$$

$$=\frac{d(\hbar \omega)}{d(\hbar k)}$$

$$=\frac{dE}{dp}$$

Where,\(\hbar \omega= E\) and \(\hbar k= p\)

$$\therefore\; V_g= \frac{dE}{dP}\dotsm(7)$$

Again, we have

$$V_{ph}= \frac{\omega}{k}$$

$$\omega= V_{ph}\cdot k\dotsm(8)$$

Using (8) in equation (6)

$$V_g= \frac{d}{dk}(V_{ph}\cdot k)$$

$$= V_{ph} \frac{dk}{dk}+k\cdot \frac{dV_{ph}}{dk}$$

$$=V_{ph}+k\frac{dV_{ph}}{dk}\dotsm(9)$$

Again,

$$P= \hbar k\Rightarrow dp= \hbar dk$$

$$k=\frac{p}{\hbar}\Rightarrow dk= \frac{dp}{\hbar}$$

Substituting in equation (9)

$$V_g= V_{ph} + \frac{p}{\hbar}\frac{dV_{ph}}{\frac{dp}{\hbar}}$$

$$V_g= V_{ph}+ p \frac{d V_{ph}}{dp}\dotsm(10)$$

Again we have

$$k=\frac{2\pi}{\lambda}=2\pi (\lambda^{-1})$$

$$\frac{dk}{d\lambda}= (2\pi) \frac{d\lambda^{-1}}{d\lambda}$$

$$\Rightarrow dk= \frac{-2\pi}{\lambda^2}d\lambda $$

Substituting above in equation (9)

$$ V_g= V_{ph} + \biggl(\frac{2\pi}{\lambda}\biggr)\biggl[\frac{dV_{ph}}{\frac{-2\pi}{\lambda^2}d\lambda}\biggr]$$

$$V_g= V_{ph}-\lambda \frac{dV_{ph}}{d\lambda}\dotsm(11)$$

Equation (11) is the required [removed] relation ) between phase velocity, group velocity and wave length.

Case 1 : For non-dispersive medium.

$$\frac{dV_{ph}}{d\lambda}=0$$

\(V_{ph}\) independent of \(\lambda\)

$$\therefore V_g= V_{ph}$$

In this case group velocity is equal to phase velocity.

Example; Sped of photon in vaccum

$$V_g=V_{ph}=C= Particle velocity$$

Case 2: For normal dispersion

$$\frac{dV_{ph}}{d\lambda}>0$$

In this case group velocity is less than phase velocity.

Case 3: for anomalous dispersion :

$$\frac{dV_{ph}}{d\lambda}<0$$

in this case group velocity is greater than phase velocity.

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Introductory Wave Mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.