de-Broglie Wavelength of relativistic particle
de-Broglie wavelength of relativistic particles were discussed above in this chapter. Relativistic mean moving particle with high speed. i.e. speed must be comparable to the velocity of light. For that formula we derived above for calculation of wavelength of particle in relativistic case is $$\lambda= \frac{h}{\sqrt{2m_0E_k}}\biggl[1+ \frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}$$
Summary
de-Broglie wavelength of relativistic particles were discussed above in this chapter. Relativistic mean moving particle with high speed. i.e. speed must be comparable to the velocity of light. For that formula we derived above for calculation of wavelength of particle in relativistic case is $$\lambda= \frac{h}{\sqrt{2m_0E_k}}\biggl[1+ \frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}$$
Things to Remember
-
The de-Broglie wavelength of particle is given by,
$$\lambda=\frac{h}{p}$$
- For relativistic case $$\lambda= \frac{h}{\sqrt{2m_0E_k}}\biggl[1+ \frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}$$
-
If \(E_k<<2m_0c^2\) [ i.e. K.E is less then rest mass energy]
$$\biggl[1+\frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}\approx 1$$
$$\therefore\; \lambda= \frac{h}{\sqrt{2m_0 E_k}}$$
- For an electron moving with high speed due to potential difference of V-volt. $$ \lambda=\frac{h}{\sqrt{2m_0E_k}}\biggl[1+\frac{ev}{2m_0 c^2}\biggr]^{-\frac12}$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

de-Broglie Wavelength of relativistic particle
de-Broglie Wavelength of relativistic particle :
A particle which is moving with high speed is associated with K.E and rest mass energy. The total energy of moving particle is given by
E= K.E + rest mass energy
E= \(E_k+m_0 c^2\dotsm(1)\)
the relation between total energy of particle and relativistic momentum is given by,
$$E=\sqrt{p^2c^2+m_0^2 c^4}\dotsm(2)$$
Where,
\(m_0\)= Rest mass
C= Speed of light
P= linear momentum
From equation (1) and (2)
$$\sqrt{p^2 c^2+ m_0^2 c^4}= E_k+ m_0 c^2$$
Squaring both side
$$p^2c^2 + m_0^2 c^4= E_k^2+ 2E_k m_0 c^2 + m_0^2 c^4$$
$$P=\sqrt{\frac{E_k^2 + 2E_k m_0 c^2}{c^2}}$$
$$or,\;\; \sqrt{2m_0 E_k}\biggl[1+ \frac{E_k}{2m_0 c^2}\biggr]^{\frac12}\dotsm(3)$$
Here, equation (3) gives relativistic linear momentum of particle.
The de-Broglie wavelength of particle is given by,
$$\lambda=\frac{h}{p}$$
$$= \frac{h}{\sqrt{2m_0E_k}}\biggl[1+ \frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}\dotsm(4)$$
Comparing with non-relativistic particles
$$\lambda=\frac{h}{\sqrt{2m_0 E_k}}\dotsm(5)$$
In equation (4) \(\biggl(+\frac{E_k}{2m_0 c^2}\biggr)^{-\frac12}\) is known as relativistic correction factor for calculation of \(\lambda\).
Case I:
If \(E_k<<2m_0c^2\) [ i.e. K.E is less then rest mass energy]
$$\biggl[1+\frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}\approx 1$$
$$\therefore\; \lambda= \frac{h}{\sqrt{2m_0 E_k}}$$
Case II:
For an electron moving with high speed due to potential difference of V-volt.
$$\therefore \lambda=\frac{h}{\sqrt{2m_0E_k}}\biggl[1+\frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}$$
$$ \lambda=\frac{h}{\sqrt{2m_0E_k}}\biggl[1+\frac{ev}{2m_0 c^2}\biggr]^{-\frac12}$$
For non-relativistic case
$$\lambda=\frac{h}{\sqrt{2m_0 ev}}$$
$$=\frac{6.626\times 10^{-34}}{\sqrt{2\times 9.1\times 10^{-31}\times 1.602\times 10^{-19})v}}$$
$$=\frac{12.2\times 10^{-10}}{\sqrt{V}}$$
$$\therefore\;\; \lambda =\frac{12.2 A^0}{\sqrt{V}}$$
Examples:
1. Calculate the de-Broglie wavelength of electron moving with K.E 54 ev.
Solution:
Rest mass energy of electron = \(m_0\times c^2\)
$$=9.1\times 10^{-31}\times ( 3\times 10^8)^2 Joule$$
$$= \frac{9.1\times 10^{-31}\times 9\times 10^{16}}{1.602\times 10^{-19}\times 10^6} mev$$
$$\therefore\; m_0 c^2= 0.511mev$$
Given,
$$E_k= 54ev<< 2m_0 c^2$$
$$54kev<<1.022\times 10^6 ev$$
So, de-Broglie wave length is given by
$$\lambda=\frac{h}{sqrt{2m_0 ev}}=\frac{12.2A^0}{\sqrt{v}}$$
$$=\frac{12.2A^0}{\sqrt{54}}$$
$$=1.67A^0$$
\(\therefore\) de-Broglie wave length of electron moving with K.E 54 ev is \(1.67 A^0\).
2. Calculate the de-Broglie wavelength of electron moving with K.E of 1kev:
Rest mass energy of electron \(m_0 c^2\) = o.511mev
now, \(1kev<<1.022\times 10^6ev\)
So, de-Broglie wave length is given by
$$\lambda= \frac{12.2 A^0}{\sqrt{v}}=\frac{12.2A^0}{\sqrt{1000}}=0.385A^0$$
\(\therefore\) Hence de-Broglie wave length of electron having K.E 1kev is 0.385\(A^0\).
3. Calculate the de-Broglie wavelength of electron moving with total energy of 1.002mev
Solution:
Total energy (E)= 1.022mev
We have
$$E= E_k+ m_0 c^2$$
$$E_k= E- m_0 c^2$$
$$= 1.022mev- 0.511mev$$
$$=0.511mev$$
\(\therefore E_k\) is comparable to \(2m_0c^2\) we use relativistic formula.
$$\lambda= \frac{h}{\sqrt{2m_0 ev}}\biggl[1+ \frac{E_k}{2m_0 c^2}\biggr]^{-\frac12}$$
$$=\frac{12.2 A^0}{\sqrt{0.511\times 10^6}}\biggl[1+\frac{0.511mev}{1.022mev}\biggr]^{\frac{-1}{2}}$$
$$=\frac{12.2 A^0}{\sqrt{0.511\times 10^6}}\times (1+\frac12)^{\frac12}$$
\(=\)\(\dotsm\) ans
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Introductory Wave Mechanics
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.