Calculation of de-Broglie wavelength of neutrino, diatomic gas and poly-atomic gas

We discussed about the de-Broglie wavelength of neutrino,mono-atomic gas, diatomic gas, poly-atomic gas in this chapter. Here we derived different expression with respect to the types of gases. We can use this final expression directly in order to solve any numerical associated with de-Broglie wavelength.

Summary

We discussed about the de-Broglie wavelength of neutrino,mono-atomic gas, diatomic gas, poly-atomic gas in this chapter. Here we derived different expression with respect to the types of gases. We can use this final expression directly in order to solve any numerical associated with de-Broglie wavelength.

Things to Remember

  1. de-Broglie wavelength of poly-atomic gas $$=\frac{h}{\sqrt{2mKT}}$$
  2. de-Broglie wavelength of diatomic gas at room temperature  $$=\frac{h}{\sqrt{5mKT}}$$
  3. de-Broglie wavelength of diatomic gas at high temperature $$=\frac{h}{\sqrt{7mKT}}$$
  4. de-Broglie wavelength of monoatomic gas $$\lambda=\frac hp=\frac{h}{\sqrt{3mKT}}$$
  5. de-Broglie wavelength of neutrino $$=\frac{h}{\sqrt{3mkT}}$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Calculation of de-Broglie wavelength of neutrino, diatomic gas and poly-atomic gas

Calculation of de-Broglie wavelength of neutrino, diatomic gas and poly-atomic gas

de-Broglie wavelength of neutrino:

Neutrino behaves as pont particle and has three degree of freedom associated with three independent velocity ( \(v_x, v_y, v_z\)).

So, K.E of thermal neutrino at temperature T

$$K.E= \frac f2 KT$$

$$= \frac32 KT$$

Where, K= Boltzmann constant \((1.38\times 10^{-23} j/k\))

$$or,\;\; \frac12 mv^2= \frac32 KT$$

$$or,\;\; \frac{p^2}{2m}=\frac{3}{2}KT$$

$$or,\;\; P=\sqrt{2mKT}\dotsm(1)$$

$$\lambda=\frac{h}{p}$$

$$=\frac{h}{\sqrt{3mkT}}\dotsm(2)$$

$$\Rightarrow \lambda \propto\frac{1}{\sqrt{T}}$$

$$\Rightarrow \lambda\propto\frac{1}{\sqrt{m}}$$

de-Broglie wavelength of monoatomic gas( He, Ar, Ne etc ):

Monoatomic gas behaves like point particle at given temperature and it has three degree of freedom.

$$\therefore \; K.E= \frac{p^2}{2m}= \frac32 KT$$

$$\therefore P= \sqrt{3mKT}$$

Hence, de-Broglie wave length is

$$\lambda=\frac hp=\frac{h}{\sqrt{3mKT}}\dotsm(1)$$

Example

Calculate the de-Broglie wavelength of He- atom at \(27^0 C\)

Solution:

T= ( 27 + 272 ) K

We know,

$$6.023\times 10^{23} atom= 4gm$$

$$1 atom = \frac{4}{6.023\times 10^{23}gm}$$

Now,

$$\lambda= \frac{6.626\times 10^{-34}}{\sqrt{3\times \frac{4}{6.023\times 10^{23}} \times 1.38\times 10^{-23}\times 300}}$$

$$= 2.31\times 10^{-12}m$$

$$=0.0231 A^0$$

de-Broglie wavelength of diatomic gas:

The diatomic molecule at given temperature T ( low - temperature ) behaves like a rigid dumb-bell. It has five degree of reedom associated with velocities (\( v_x, v_y, v_x\;and \; \omega_y\)) i.e 3- translational and 2- rotational degree of freedom.

$$K.E= \frac f2 KT$$

$$\frac{p^2}{2m}=\frac52 KT$$

$$p=\sqrt{5mKT}\dotsm(1)$$

$$\lambda=\frac{h}{p}$$

$$=\frac{h}{\sqrt{5mKT}}\dotsm(2)$$

This expression is for the toom temperature.

The diatomic molecule at given temperature T ( high- temperature ) behaves like spring dumbbell. It has 7-degree of freedom associated with velocities ( \(v_x,v_y ,v_z,\omega_x\) and \(\omega_y\)) and extension compression of bound (spring)

$$K.E= \frac f2 KT$$

$$\frac{p^2}{2m}=\frac72 KT$$

$$\therefore p= \sqrt{7mKT}\dotsm(3)$$

$$\therefore\;\; \lambda=\frac{h}{p}$$

$$=\frac{h}{\sqrt{7mKT}}$$

de-Broglie wavelength of polyatomic gas:

The degree of freedom for polyatomic gas molecule is taken as 6. So de-Broglie wavelength is given by

$$\lambda=\frac{h}{\sqrt{6mKT}}$$

In case of most probable distribution of velocity in Maxwell Boltzmann statistic. The de-Broglie wavelength is calclated by using most probable velocity.

$$\lambda=\frac{h}{mv_p}$$

$$=\frac{h}{m\sqrt{\frac{2KT}{m}}}$$

$$=\frac{h}{\sqrt{2mKT}}$$

Reference:

  1. Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
  3. Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.

Lesson

Introductory Wave Mechanics

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.