Heisenberg's Uncertainty principle
We discussed about Heisenberg's Uncertainty principle and prof the product ∇x⋅∇Px consistent with Heisenberg's uncertainity principle.
Summary
We discussed about Heisenberg's Uncertainty principle and prof the product ∇x⋅∇Px consistent with Heisenberg's uncertainity principle.
Things to Remember
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Heisenberg's Uncertainty principle
1. Determine <x>,<x2><Px>,<P2x> ∇x and ∇Px for
ψ0(x)=(mωπℏ)14e−mω2ℏx2
2. does the product ∇x⋅∇Px consistent with Heisenberg's uncertainity principle?
Reapear above calculations for \(\psi_1(x),\psi_2(x)\dotsm \psi_n(x)\
⇒ Given wave function,
ψ0(x)=(mωπℏ)14e−mω2ℏ⋅x2
We have,
α=√mωℏ
So,ψ0(x)=[α√π]12e−α2x22⋯(1)
<x>=∫∞−∞ψ∗0(x)[ˆxψ0(x)]dx
=α√π∫∞−∞e−α2x2⋅xdx
=0
<x2>=∫∞−∞ψ∗0(x)[ˆx2ψ0(x)]dx
=α√π∫∞−∞x2e−α2x2dx
=2α√π∫∞0x2e−α2x2dx
Put t=α2x2⇒x=tH2α
or,x2=tα2
dx=12αt−12dt
<x2>=2α√π∫tα2e−tt122αdt
=1√πα2∫∞0e−tt12dt=1√πα2∫∞0e−tt32−1dt
=1√πα2Γ32
=12Γ121Γ12α2
=12α2
Again, we have, ˆPx=−iℏ∂∂x
<Px>=∫∞−∞ψ∗0(x)[ˆPxψ0(x)]dx
=α√π∫∞−∞e−α2x22[−iℏ∂∂x(e−α2x22)]dx
=(−iℏ)α√π∫∞−∞e−α2x22e−α2x22−α22x2dx
=iℏα3√π∫∞∞xe−α2x2dx
=0
and,
<P2x>=∫∞−∞ψ∗0(x)[ˆPxψ0(x)]dx
=α√π∫∞−∞e−α2x22[−ℏ2∂2∂x2(e−α2x22)]dx
=−ℏ2α√π∫∞−∞e−α2x22∂∂x[e−α2x22(−2xα22)]dx
=ℏ2α3sqrtπ[∫∞−∞e−α2x22(e−α2x22+xe−α2x22(−2α2x2)]
=ℏ2α3√π[∫∞−∞e−α2x2dx−α2∫∞−∞x2e−α2x22dx]
=ℏ2α3√π[1α√π−α212α3√π]
=ℏ2α2−α2ℏ22
=2ℏ2α2−ℏα22
=ℏ2α22
Now,
Δx=[<x>2−<x>2]12
=[12α2]12
=1√2α
and
ΔPx=[<P2x>−<Px>2]12
=[ℏ2α22−0]12
=ℏα√2
Then, Δx⋅ΔPx=1√2αℏα√2
=ℏ2
Similimaly, for ψ1(x),ψ2(x)⋯
Reference:
- Mathews, P.M and K Venkatesan. A Text Book of Quantum Mechanics. New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
- Merzbacher, E. Quantum Mechanics . New York: John Wiley, 1969.
- Prakash, S and S Salauja. Quantum Mechanics. Kedar Nath Ram Nath Publishing Co, 2002.
- Singh, S.P, M.K and K Singh. Quantum Mechanics. Chand & Company Ltd., 2002.
Lesson
Harmonic oscillator and Application
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.