Schrodinger equation for rigid rotator. [ continue ]

When the distance between two point particle is always constant and can rotate about an axis passing through it's centre of mass is called as rigid rotator. Here we calculate the \(\Theta\) equation of rigid rotator. $$\Theta(\theta)= \biggl[\frac{2l+1}{2}\cdot \frac{l-m}{2}\biggr]^\frac12 P_l^m (cos\theta)\dotsm(15)$$ This is the required expression for \(\Theta\)- equation of rigid rotator.

Summary

When the distance between two point particle is always constant and can rotate about an axis passing through it's centre of mass is called as rigid rotator. Here we calculate the \(\Theta\) equation of rigid rotator. $$\Theta(\theta)= \biggl[\frac{2l+1}{2}\cdot \frac{l-m}{2}\biggr]^\frac12 P_l^m (cos\theta)\dotsm(15)$$ This is the required expression for \(\Theta\)- equation of rigid rotator.

Things to Remember

  1. So, the normalized \(\Theta\) equation for rigid rotator is,

    $$\Theta(\theta)= \biggl[\frac{2l+1}{2}\cdot \frac{l-m}{2}\biggr]^\frac12 P_l^m (cos\theta)\dotsm(15)$$

    This is the required expression for \(\Theta\)- equation of rigid rotator. 

  2. The complete wave function for rigid rotator is given by

    $$\psi(\theta,\phi)= Y_l^m (\theta, \phi)= \Theta (\theta)\cdot \Phi(\phi)$$

    $$\therefore\;\; Y_l^m (\theta,\phi)= \frac{1}{\sqrt{2\pi}}e^{im\phi}\biggl[\frac{2l+1}{2}\frac{(l-m)!}{(l+m)!}\biggr]^\frac12 P_l^m (cos\theta)$$

    $$i.e.\;\; Y_l^m (\theta,\phi)= \biggl[\frac{2l+1}{4\pi}\cdot \frac{(l-m)!}{(l+m)!}\biggr]^\frac12 P_l^m (cos\theta) e^{im\phi}$$

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Schrodinger equation for rigid rotator. [ continue ]

Schrodinger equation for rigid rotator. [ continue ]

\(\Theta\) equation for rigid rotator:

Now, taking first and third part of equation (4) we get,

$$\frac{sin\theta}{\Theta}\frac{d}{d\theta}\biggl(sin\theta\frac{d\Theta}{d\theta}\biggr)+\frac{2IE}{\hbar^2}=\frac{m^2}{sin^2\theta}$$

$$or\;\; \frac{1}{\Theta sin\theta}\frac{d}{d\theta}sin\theta\frac{d\Theta}{d\theta}+\biggl(B-\frac{m^2}{sin^2\theta}\biggr)\Theta=0\dotsm(9)$$

this is the \(\theta\) equation for rigid rotator.

Where, $$B=\frac{2IE}{\hbar^2}\dotsm(10$$

To sove the equation (9)

Let, \(x= cos\theta\Rightarrow sin^2\theta= t-x^2\)

$$or,\;\; \frac{dx}{d\theta}=-sin\theta$$

$$or,\; \frac{d\Theta}{d\theta}=\frac{d\Theta}{dx}\cdot \frac{dx}{d\theta}$$

$$=-sin\theta\frac{d\Theta}{dx}$$

$$\Rightarrow \; \frac{1}{sin\theta}\frac{d}{d\theta}=\frac{-d}{dx}$$

Substituting all these quantities in equation (9) we get,

$$-\frac{d}{dx}\biggl[sin\theta(-sin\theta\frac{d\Theta}{dx})\biggr]+(B-\frac{m^2}{1-\alpha^2})\Theta=0$$

$$or,\; \frac{d}{dx}\biggl[(1-x^2)\frac{d\Theta}{dx}+\biggl(B-\frac{m^2}{1-x^2}\biggr)\Theta=0\dotsm(11)$$

This is the form of associated Legendre polynomial whose solution can be written as,

$$\Theta(\theta)= BP_l^m (x)\dotsm(12)$$

Where,

$$P_l^m= (1-x^2)^\frac m2 \frac{d^m}{dx^m}P_l(x)$$

Where, \(P_l(x)\) is the legendre polynomial of first order. The equation (12) in terms of \(\theta\) can be written as,

$$\Theta(\theta)= BP__l^m(cos\theta)\dotsm(13)$$

Now, the normalized equation can be obtained by using the property of orthogonality; we have,

$$\int_0^\pi [ \Theta (\theta)]^* [ \Theta(\theta0]sin\theta d\theta=1$$

$$or,\;\; |B|^2 \int_0^\pi |P_l^m (cos\theta)|^2 sin\theta d\theta=1$$

$$or,\;\; |B|^2\biggl[\frac{2}{2l+1}\cdot \frac{(l+m)!}{(l-m)!}\biggr]^\frac12\dotsm(14)$$

So, the normalized \(\Theta\) equation for rigid rotator is,

$$\Theta(\theta)= \biggl[\frac{2l+1}{2}\cdot \frac{l-m}{2}\biggr]^\frac12 P_l^m (cos\theta)\dotsm(15)$$

This is the required expression for \(\Theta\)- equation of rigid rotator.

Complete wave function for rigid rotator:

The complete wave function for rigid rotator is given by

$$\psi(\theta,\phi)= Y_l^m (\theta, \phi)= \Theta (\theta)\cdot \Phi(\phi)$$

$$\therefore\;\; Y_l^m (\theta,\phi)= \frac{1}{\sqrt{2\pi}}e^{im\phi}\biggl[\frac{2l+1}{2}\frac{(l-m)!}{(l+m)!}\biggr]^\frac12 P_l^m (cos\theta)$$

$$i.e.\;\; Y_l^m (\theta,\phi)= \biggl[\frac{2l+1}{4\pi}\cdot \frac{(l-m)!}{(l+m)!}\biggr]^\frac12 P_l^m (cos\theta) e^{im\phi}$$

Energy level Diagram for rigid rotator:

We have for rigid rotation,

$$B=\frac{2IE}{\hbar^2}\; and\; B= l(l+1)$$

So,

$$\frac{2IE}{\hbar^2}= l(l+1)$$

$$or,\; E= \frac{\hbar^2 l(l+1)}{2I}$$

$$or,\; E= Bl(l+1)$$

Where, \(B= \frac{\hbar^2}{2I}= \) rotational constant.

Reference:

  1. Mathews, P.M and K Venkatesan.A Text Book of Quantum Mechanics.New Delhi: Tata McGraw Hill Publishing Co. Ltd, 1997.
  2. Merzbacher, E.Quantum Mechanics .New York: John Wiley, 1969.
  3. Prakash, S and S Salauja.Quantum Mechanics.Kedar Nath Ram Nath Publishing Co, 2002.
  4. Singh, S.P, M.K and K Singh.Quantum Mechanics.Chand & Company Ltd., 2002.

Lesson

Central Potential Problems

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.