Angular Momentum

Angular momentum is the moment of linear momentum and it is the rotational analog of linear momentum. Similarly, torque is the rotational analog of force.

Summary

Angular momentum is the moment of linear momentum and it is the rotational analog of linear momentum. Similarly, torque is the rotational analog of force.

Things to Remember

All the equation of kinematics and dynamics of particles have thier rotational analog. The form of the equations is the same. Angular momentum is conserved for a system of particles.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Angular Momentum

Angular Momentum

Angular momentum

The moment of linear momentum of a particle about an axis is called the angular momentum of the particle. The angular momentum of a particle rotating about a vertical axis is,\begin{align*} \overrightarrow{J}=\overrightarrow{r}\times \overrightarrow{P}=m(\overrightarrow{r}\times\overrightarrow{v})\end{align*} where, \(\overrightarrow{P}\) is the lineaar momentum of the body. It is a vector quantity having having direction perpendicular to the plane containing\(\overrightarrow{r}\) and\(\overrightarrow{v}\) as defined by the right hand thumb rule.

Angular momentum of a system of particles

Consider a system of n number of particles with masses \(m_{1},m_{2},m_{3}...m_{n}\) and respective position vectors\(\overrightarrow{r_{1}},\overrightarrow{r_{2}},\overrightarrow{r_{3}}...\overrightarrow{r_{4}}\) rotating about the vertical axis. The angular momentum of the system is the vector sum of angular momentum of the individual particles ie.\begin{align*} \overrightarrow{J}=\overrightarrow{J_{1}}+\overrightarrow{J_{2}}+\overrightarrow{J_{3}}...+\overrightarrow{J_{n}}\end{align*}\begin{align*} or, \overrightarrow{J}=\overrightarrow{r_{1}}\times m_{1}\overrightarrow{v_{1}}+\overrightarrow{r_{2}}\times m_{2}\overrightarrow{v_{2}}+\overrightarrow{r_{3}}\times m_{3}\overrightarrow{v_{3}}+...\overrightarrow{r_{n}}\times m_{n}\overrightarrow{v_{n}}\end{align*}\begin{align*} or, \overrightarrow{J}=\sum_{k=1}^{n}\overrightarrow{r_{k}}\times m_{k}\overrightarrow{v_{k}}-----1 \end{align*} where, \(\overrightarrow{r_{k}}\) and\(\overrightarrow{v_{k}}\) respectively are the position and velocity of the particles taken in lab frame. Transforamtion equations for\(\overrightarrow{r_{k}}\) and\(\overrightarrow{v_{k}}\) betwwen lab frame and CM frame are,\begin{align*} \overrightarrow{r_{k}}=\overrightarrow{r'_{k}}+\overrightarrow{R}-----2 \end{align*} and\begin{align*} \overrightarrow{v_{k}}=\overrightarrow{v'_{k}}+\overrightarrow{v}-----2 \end{align*} where, \(\overrightarrow{R}\) and\(\overrightarrow{v}\) are the position and velocities of CM taken in lab frame. Using equation 2 in equation 1, we get,\begin{align*} \overrightarrow{J}=\sum_{k=1}^{n}(\overrightarrow{r'_{k}}+\overrightarrow{R})\times m_{k}(\overrightarrow{v'_{k}}+\overrightarrow{v}) \end{align*}\begin{align*} or, \overrightarrow{J}=\sum [\overrightarrow{r'_{k}}\times m_{k}\overrightarrow{v'_{k}}+\overrightarrow{r_{k}}\times m_{k}\overrightarrow{v}+\overrightarrow{R}\times m_{k}\overrightarrow{v'_{k}}+\overrightarrow{R}\times m_{k}\overrightarrow{v}]\end{align*}\begin{align*} or, \overrightarrow{J}=\overrightarrow{R}\times M\overrightarrow{V}+\sum\overrightarrow{r'_{k}}\times m_{k}\overrightarrow{v'_{k}}+\sum\overrightarrow{r'_{k}}m_{k}\times \overrightarrow{v}+\overrightarrow{R}\times \sum m_{k}\overrightarrow{v'_{k}}---3 \end{align*} we have,\begin{align*} \overrightarrow{r'_{k}}=\overrightarrow{r_{k}}-\overrightarrow{R}\end{align*}\begin{align*} or, \sum m_{k}\overrightarrow{r'_{k}}=\sum m_{k}\overrightarrow{r_{k}}-\sum m_{k}\overrightarrow{R}-----4\end{align*} from definition of CM,\begin{align*} \sum m_{k}\overrightarrow{r_{k}}=\sum m_{k}\overrightarrow{R}-----5\end{align*} from equations 4 and 5,\begin{align*} \sum m_{k}\overrightarrow{r'_{k}}=0-----6\end{align*} again,\begin{align*} \sum m_{k}\overrightarrow{v_{k}}=\sum m_{k}\overrightarrow{v}-----6\end{align*} By definition of CM,\begin{align*} \sum m_{k}\overrightarrow{v_{k}}=\sum m_{k}\overrightarrow{v}-----8 \end{align*} then, from equations 7 and 8,\begin{align*} \sum m_{k}\overrightarrow{v'_{k}}=0-----9 \end{align*} with equations 6 and 9, equation 3 becomes,\begin{align*} or, \overrightarrow{J}=\overrightarrow{R}\times M\overrightarrow{V}+\sum\overrightarrow{r'_{k}}\times m_{k}\overrightarrow{v'_{k}} \end{align*}\begin{align*} or, \overrightarrow{J}=\overrightarrow{R}\times \overrightarrow{P}+\overrightarrow{J_{cm}} \end{align*} where, \(\overrightarrow{J_{o}}=\overrightarrow{R}\times \overrightarrow{P}\) is the angular momentum of the CM about the fixed axis, also known as the orbital angular momentum of the rigid body and,\( \overrightarrow{J_{cm}}=\sum\overrightarrow{r'_{k}}\times m_{k}\overrightarrow{v'_{k}} \) is the angular momentum of the system about the CM, also called as the spin angular momentum of the system.

Torque of a particle

The torque acting on a particle is defined as the moment of force about the axis of rotation. mathematically, \begin{align*} \overrightarrow{\tau}=\overrightarrow{r}\times \overrightarrow{F}\end{align*} it is a vector quantity with direction along the perpendicular to the plane containing \(\overrightarrow{r}\) and\(\overrightarrow{F}\) as defined by the right hand thumb rule. It can also be expressed as the rate of change of angular momentum ie. \(\tau=\frac{\mathrm{d\overrightarrow{J}} }{\mathrm{d} t}\).

Torque of a system

Consider a system of n number of particles. Then the torque of the system is defined as the vector sum of the torques acting on individual particles. Mathematically, \(\overrightarrow{\tau}=\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}}+\overrightarrow{\tau_{3}}...+\overrightarrow{\tau_{n}}\).

Conservation of Angular Momentum

In the absence of external torque, angular momentum of a body remains conserved. We know,\(\tau=\frac{\mathrm{d\overrightarrow{J}} }{\mathrm{d} t}\). When, \(\tau=0\), then\(\frac{\mathrm{d\overrightarrow{J}} }{\mathrm{d} t}=0\). It implies that the angular momentum is constant and hence conserved.

References

Adhikari, Pitri Bhakta. A Textbook of Physics Volume-I. Kathmandu: Sukunda Pustak Bhawan, 2015.

Feynman, Richard P. The Feynman Lectures on Physics Volume 1. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Mathur, D S. Mechanics. New Delhi: S. Chand & Company Pvt. Ltd., 2015.

Young, Hugh D, Roger A Freedman and A Lewis Ford. University Physics. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Lesson

Linear and Angular momentum

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.