Gravitational Flux and Poisson's equation of Gravitational Field

The total gravitational field flowing out of a given surface area is called gravitational flux.

Summary

The total gravitational field flowing out of a given surface area is called gravitational flux.

Things to Remember

\( \Phi =-4\pi GM\)

\(\bigtriangledown.\vec{E}=-4\pi G\rho \)

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Gravitational Flux and Poisson's equation of Gravitational Field

Gravitational Flux and Poisson's equation of Gravitational Field

Gravitational Flux:

gf
gf

The total gravitational field flowing out of a given surface area is called gravitational flux. If E be the gravitational field intensity at a point on a surface of the surface area A then the gravitational flux is given by

\(\Phi = \vec{E}.\vec{A}\)

Gauss Law of Gravitational Field Intensity:

It states that the total gravitational flux over a closed surface enclosing certain mass M is equal to \(4\pi G\) times the mass enclosed.

\(\Phi = -4\pi GM\)

Consider a surface enclosing a point mass M. Let us take any point P on the surface at a distance r from the point mass. Thus the gravitational field intensity at a point P due to mass M is

\(E=-\frac{GM}{r^{2}}\)

Let us take an elementary surface area dA on the surface S such that the point P lies inside it. Let \(\hat{n}\) be the unitnormal to the surface dA such that E makes an angle \(\theta \) with \(\hat{n}\).

\(\therefore E_n=\vec{E}.\hat{n}\)=Ecos\(\theta\)

The gravitational flux through the surface area dA is \(d\Phi \)=\(E_ndA\)\begin{align*}=Ecos\theta dA\end{align*}

Then the total flux through the whole surface is given by

\begin{align*}\Phi =\oint d\Phi \end{align*}\begin{align*}=\oint Ecos\theta dA \end{align*}\begin{align*}=\oint -\frac{GM}{r^{2}}cos\theta dA \end{align*}\begin{align*}=-GM\oint frac{cos\theta dA}{r^{2}} \end{align*}\begin{align*}=-GM\oint d\Omega \end{align*}

Where \( d\Omega =\frac{cos\theta dA}{r^{2}}\) the solid angle subtended by the surface dA at O where \(\Omega = 4\pi \) is the solid angle subtended at O by the surface S.

\( \Phi =-4\pi GM\) Proved.\begin{align*} \end{align*}

Poisson's equation of Gravitational Field:

We have the expression of gravitational flux as given by Gauss law is

\(\Phi =-4\pi G\).Mass enclosed \begin{align*}=-4\pi G.\rho \int_v \rho .dV\rightarrow eqn I \end{align*}Again, by the definition of gravitational flux\begin{align*}\Phi =\vec{E}.\vec{A} \end{align*}\begin{align*}=\oint_s\vec{E}.\hat{n}dA \end{align*}\begin{align*}=\int_v(div\vec{E})dV\rightarrow eqnII\end{align*}Equating Eqn(I) and eqn (II) we get\begin{align*}-4\pi G\rho \int_vdV=\int_v(\bigtriangledown.\vec{E})dV \end{align*}\begin{align*}\bigtriangledown.\vec{E}=-4\pi G\rho i.e.\space Poisson's\space equation.\end{align*}

References

Adhikari, Pitri Bhakta. A Textbook of Physics Volume-I. Kathmandu: Sukunda Pustak Bhawan, 2015.

Feynman, Richard P. The Feynman Lectures on Physics Volume 1. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Mathur, D S. Mechanics. New Delhi: S. Chand & Company Pvt. Ltd., 2015.

Young, Hugh D, Roger A Freedman and A Lewis Ford. University Physics. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Lesson

Gravitational Potential And Field

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.