Application of Gauss Law

This note provides us an information about gauss's law and its applications.

Summary

This note provides us an information about gauss's law and its applications.

Things to Remember

\(E=-\frac{GM}{r^{2}}\)(for point on the surface, r=R)

\(E=-\frac{GMr}{R^{3}}\)(for point inside a solid sphere, r=depth from the surface)

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Application of Gauss Law

Application of Gauss Law

Application of Gauss Law:

1. Gravitational field intensity due to a spherical shell:

Consider a spherical shell of mass M and radius R. Let us take a point P at a distance r from the centre of the shell.

Case(a): When the point P lies outside the surface of the shell:

case a
case a


Let E be the gravitational field intensity at point P due to shell.

Let us draw a sphere of radius r with the centre at the centre of the shell of radius R such that the gravitational field intensity at any pointr on its surface is the same. Then by the definition flux

\(\Phi =\vec{E}.\vec{A}\)\begin{align*}=E.4\pi r^{2}\rightarrow eqnI \end{align*}Again, Applying Gauss law,\begin{align*}\Phi=-4\pi G.mass\space enclosed\end{align*}\begin{align*}=-4\pi GM\rightarrow eqnII \end{align*}from(I) and (II), we get\begin{align*}E.4\pi r^{2}=-4\pi GM \end{align*}\begin{align*}E=-\frac{GM}{r^{2}} \end{align*}

Case(b): When the point P lies on the surface of the shell:

We know, field intensity when P lies outside the shell is\begin{align*}E=-\frac{GM}{r^{2}} \end{align*}But on the surface r=R,\begin{align*}\therefore E=-\frac{GM}{R^{2}} \end{align*}

Case (c): When the point P lies inside the shell

case c
case c

For this construct Gaussian surface of radius r as shown in figure. Then, by definition,\begin{align*}Gravitational\space flux(\Phi)= \vec{E}.\vec{A}\end{align*}\begin{align*}=E.4\pi r^{2}\rightarrow eqnIII \end{align*}Using Gauss law, gravitational flux flowing out of the surface of radius r is,\begin{align*}\Phi =-4\pi G.mass\space enclosed\space by\space the\space surface\space of\space radius\space r \end{align*}\begin{align*} =-4\pi G.0\end{align*}\begin{align*}=0\rightarrow eqnIV \end{align*}from(III) and (IV)\begin{align*}E=0 \end{align*}

2. Gravitational field intensity due to a solid sphere:

Consider a solid sphere of mass M and radius R. Let us take a point P where we are going to find the field intensity due to sphere.

Case(I): when the point P lies outside the sphere.

case i
case i

case-I

Let the point P is at a distance r from the centre of the sphere as shown in figure. Let us draw a spherical surface of radius r with the centre at the centre of the sphere.

By definition,

Gravitational flux

\begin{align*}\Phi =\vec{E}.\vec{A}=E.4\pi r^{2}\rightarrow eqn(I) \end{align*}where E is the field intensity at point P.

Also from Gauss Law\begin{align*}\Phi=-4\pi G.mass\space enclosed\rightarrow eqn(II) \end{align*}Equating (I) and (II),\begin{align*}E.4\pi r^{2}=-4\pi GM \end{align*}\begin{align*}E=-\frac{GM}{r^{2}} \end{align*}

Case(II): When the point P lies on the surface of the sphere, r=R

\begin{align*}\therefore Field\space intensity\space at\space point\space P\space on\space the\space surface=-\frac{GM}{R^{2}}\end{align*}

Case(III): When the point P lies inside the sphere:

case ii
case ii

Let the point P lie at a distance r from the centre of the sphere inside the sphere. Let us draw a Gaussian surface of radius r with the centre at the centre of the sphere.

Then from Gauss law, the gravitational flux over the surface of radius r is \begin{align*}\Phi =-4\pi G.mass\space enclosed \end{align*}\begin{align*}=-4\pi G.\frac{4}{3}\pi r^{3}\rho \end{align*}where \(\rho \) is the density of material of the sphere.

By definition, Gravitational flux,\begin{align*}\Phi=E.4\pi r^{2} \end{align*}\begin{align*} \end{align*}E=field intensity at point P

Equating (I) and (II) we get\begin{align*}E.4\pi r^{2}=-4\pi G.\frac{4}{3}\pi r^{3}\rho \end{align*}\begin{align*}E=-\frac{GMr}{R^{3}} \end{align*}where M=\(\frac{4}{3}\pi r^{3}\rho \)

References

Adhikari, Pitri Bhakta. A Textbook of Physics Volume-I. Kathmandu: Sukunda Pustak Bhawan, 2015.

Feynman, Richard P. The Feynman Lectures on Physics Volume 1. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Mathur, D S. Mechanics. New Delhi: S. Chand & Company Pvt. Ltd., 2015.

Young, Hugh D, Roger A Freedman and A Lewis Ford. University Physics. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Lesson

Gravitational Potential And Field

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.