Equation of Motion of a Rotating Rigid body

angular momentum is the moment of linear momentum. torque is the product of I and angular acceleration.

Summary

angular momentum is the moment of linear momentum. torque is the product of I and angular acceleration.

Things to Remember

mathematical form of torque and angular momentum.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Equation of Motion of a Rotating Rigid body

Equation of Motion of a Rotating Rigid body

Equation of Motion of a Rotating Rigid body:

Consider a rigid body rotating with the angular velocity ‘ω’ with respect to a fixed axis. At that time the torque acting on the rigid body is given by the rate of change of angular momentum. i.e.

Torque acting on the body,\begin{align*}\overrightarrow{\tau}=\frac{\mathrm{d} \overrightarrow{L}}{\mathrm{d} x}\end{align*}

Where, \(\begin{align*}\overrightarrow{L}\end{align*}\)is the angular momentum of the rigid body.

Since we have,

\begin{align*}\overrightarrow{L}=I\overrightarrow{\omega }\end{align*}, I= M.I of the rigid body.

Then, above equation becomes,

\begin{align*}\tau =\frac{\mathrm{d} (I\overrightarrow{\omega })}{\mathrm{d} x}\end{align*}\begin{align*}\tau =\frac{I\mathrm{d} (\overrightarrow{\omega })}{\mathrm{d} x}\end{align*}\begin{align*}\therefore \tau =I\alpha\end{align*}

Where, \(\begin{align*}\alpha =\frac{\mathrm{d} \overrightarrow{\omega }}{\mathrm{d} x}\end{align*}\) is the angular acceleration of the rigid body.

References:

Adhikari, Pitri Bhakta. A Textbook of Physics Volume-I. Kathmandu: Sukunda Pustak Bhawan, 2015.

Feynman, Richard P. The Feynman Lectures on Physics Volume 1. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014.

Mathur, D S. Mechanics. New Delhi: S. Chand & Company Pvt. Ltd., 2015.

Young, Hugh D, Roger A Freedman and A Lewis Ford. University Physics. Noida: Dorling Kindersley (India) Pvt. Ltd., 2014

Lesson

Dynamics of Rigid Bodies

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.