Series solution of Legendre differential equation
Series solution of Legendre differential equation was discussed above in this topic. While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form: $$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$ $$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$ This equation is called Legendre differential equation.
Summary
Series solution of Legendre differential equation was discussed above in this topic. While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form: $$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$ $$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$ This equation is called Legendre differential equation.
Things to Remember
Important equation to be remember:
-
$$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0$$
$$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$
This equation is called Legendre differential equation.
-
power series method :which can be written as,
$$y=\sum_{r=0}^\infty a_r a^{k+r}, a_0\ne0$$
-
$$or, a_r=\frac{-(k-r+1)(k-r+2) a_{r-2}}{n(n+1)-(k-r)(k-r+1)}$$
This is the recurrence relation.
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Series solution of Legendre differential equation
Series solution of Legendre differential equation :
While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form:
$$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$
$$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$
This equation is called Legendre differential equation. the solution of equation (1) can be found power series method which can be written as,
$$y=\sum_{r=0}^\infty a_r a^{k+r}, a_0\ne0\dotsm(2)$$
since equation (2) is the solution of equation (1). So it must satisfy equation (1)
$$y'=\sum_{r=0}^\infty a_r(k+r) x^{k+r-1}$$
and
$$y''=\sum_{r=0}^\infty a_r (k+r)(k+r-1) x^{k+r-2}$$
Then,
$$(1-x^2) \sum_{r=0}^\infty a_r(k+r)(k+r-1) x^{k+r-2}- 2x\sum_{r=0}^\infty a_r(k+r)x^{k+r-1}+n(n+1)\sum_{r=0}^\infty a_r x^{k+r}=0$$
$$or,\;\; \sum_{r=0}^\infty a_r(k+r)(k+r-1)x^{k+r-2}=\sum_{r=0}^\infty a_r(k+r)(k+r-1)x^{k+r}-2\sum_{r=0}^\infty a_r(k+r)x^{k+r}+ n(n+1)\sum_{r=0}^\infty a_r x^{k+r}=0$$
$$or,\;\;\sum_{r=0}^\infty a_r(k+r)(k+r-1)x^{k+r-2}+\sum_{r=0}^\infty a_r[n(n+1)-(k+r)(k+r-1)-2(k+r)] x^{k+r}=0$$
$$or,\;\;\sum_{r=0}^\infty a_r(k-r)(k-r-1)x^{k-r-2}+\sum_{r=0}^\infty a_r[n(n+1)-(k-r)(k-r+1)]x^{k-r}=0$$
Now, equating the coefficient of \(x^k\) put r=0 (highest term) to zero
$$ a_0[n(n+1) -k(k+1)]=0$$
Since \(a_0\ne0\)
\( n(n+1)-k(k+1)=0\)
or, \(n^2+n-k^2-k=0\)
or, \( (n-k)(n+k)+(n-k)=0\)
or, \( (n-k)(n+k+1)=0\)
Either, k=n or k=-n-1
Equating the coefficient of \(x^{k-1}\) (put r=1) to zero, we get
$$ a_1[n(n+1)-k(k-1)]=0$$
While substituting k=+n and k=-n-1 in equation, the bracketed term never vanishes. So, \(a_1\) must be vanished. So series solution of Legendre differential equation contain no odd term. Now, comparing the coefficient of \(x^{k-r}\) on both sides, we get,
$$or, \;\; a_{r-2}(k-r+2) (k-r+1) + a_r[n(n+1) - (k-r) (k-r+1)]=0$$
$$or, a_r=\frac{-(k-r+1)(k-r+2) a_{r-2}}{n(n+1)-(k-r)(k-r+1)}$$
This is the recurrence relation.
Case I:
For \( k=+n, a_0\ne0, a_1=a_3=a_5=a_7=a_{11}=a_{13}=0\)
$$a_r=\frac{-(n-r+1)(n-r+2)}{n(n+1)-(n-r)(n-r+1)}a_{r-2}$$
$$a_r=\frac{-(n-r+1) (n-r+2)}{r(2n-r+1)}a_{r-2}$$
Put r=2
$$a_2=\frac{-(n-2+1)(n-2+2)}{2(2n-2+1)}a_0$$
$$= \frac{-(n-1)n}{2(2n-1)}a_0$$
Put, r=4
$$a_4=\frac{-(n-3)(n-2)}{4(2n-3)}a_2$$
$$=\frac{-(n-3)(n-2)}{4(2n-3)}\cdot \frac{-(n-1)n}{2(2n-1)}a_0$$
$$=\frac{(-1)^2nn(n-1)(n-2)(n-3)}{2\cdot 4(2n-1)(2n-3)}a_0$$
Put r=2j
$$ a_{2j}=\frac{(-1)^j n(n-1) (n-3)\cdot (n-2j+1) a_0}{2.4...2j(2n-1)(2n-3)\cdot (2n-2j+1)}$$
$$a_{2j}=\frac{(-1)^J n_! a_0}{2^J J!(n-2j)! (2n-1)(2n-3)\cdot (2n-2j+1)}$$
We know the solution of Legendre differential equation for k=n is
$$ y_1=\sum_{r=0}^\infty a_r k^{k-r}$$
$$=\sum_{r=0}^\infty a_r x^{n-r}$$
$$=\sum_{j=0}^\infty a_{2j} x^{n-2j}$$
$$=\sum_{j=0}^\infty \frac{(-1)^j n! a_0 x^{n-2j}}{2^j J! (2n-1) (2n-3)\cdot (2n-2j+1)}$$
$$=\sum_{j=0}^\infty\frac{(-1)^j n(n-1)(n-2)(n-3)\cdot(n-2j+1)(n-2j)!}{2^J j!(2n-1)(2n-3)\cdot (2n-2j+1)}$$
Case II:
\(k=-(n+1\;\;\; a_0\ne0, a_1=a_3=a_5=a_7=0\)
we have,
$$a_r= \frac{-(k-r+1) (k-r+2) a_{r-2}}{[n(n+1)-(k-r)(k-r+1)]}$$
$$=\frac{-(n-1-r+1)(n-1-r+2)a_{r-2}}{n(n+1)-(-n-1-r)(n-1-r+1)}$$
$$=\frac{-(n+r)(n+r-1)}{r(2n+r+1)} a_{r-2}$$
$$=\frac{(n+r)(n+r-1)}{r(2n+r+1)}a_{r-2}$$
Put r=2,
$$a_2=\frac{(n+2)(n+1)}{2(2n+3)}a_0$$
Put r=4,
$$ a_4=\frac{(n+4)(n+3)}{4(2n+5)}a_2$$
$$=\frac{(n+4)(n+3)}{4(2n+5)}\cdot \frac{(n+2)(n+1)}{2(2n+3)}a_0$$
$$=\frac{(n+1)(n+2)(n+3)(n+4)}{2\cdot 4 (2n+3)(2n+5)}a_0$$
$$or\;\; a_{2j}=\frac{(n+1)(n+2)(n+3)\cdot (n+2j)}{2\cdot4\dotsm 2j(2n+3)(2n+5)\cdot (2n+2j+1)}a_0$$
We know the solution is
$$y=\sum_{r=0}^\infty a_r x^{k-r}$$
$$\sum_{r=0}^\infty a_1 x^{-(n+1)-r}$$
$$=\sum_{j=0}^\infty a_{2j} x^{-(n+1)-2j}$$
$$=\sum_{j=0}^\infty \frac{(n+1)(n+2)(n+3)\dotsm(n+2j)a_0 x^{-(n+1-2j)}}{2\cdot4\dotsm 2j(2n+3)(2n+5)\dotsm (2n+2j+1)}$$
$$=\sum_{j=0}^\infty \frac{(n+1)(n+2)\dotsm (n+2j) a_0 x^{-(n+1)-2j}}{2^j J! (2n+3) (2n+5)\dotsm (2n+2j+1)}\dotsm(4)$$
The complete solution is
$$y=AY_1+ BY_2$$
Reference:
- Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
- Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
- Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
- Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
- Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.
Lesson
Differential equations
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.