Series solution and Hermite polynomial of Hermite differential equation

We discussed about Series solution of Hermite Differential Equation and first four Hermite polynomial in this topic. Differential equation occurs in various branch of physics, among them Hermite differential equation occur while solving quantum harmonic oscillator in quantum physics. It helps to find energy value and various kind of wave function. The form of Hermite differential equation $$y''-2xy'+2ny=0\dotsm(1)$$

Summary

We discussed about Series solution of Hermite Differential Equation and first four Hermite polynomial in this topic. Differential equation occurs in various branch of physics, among them Hermite differential equation occur while solving quantum harmonic oscillator in quantum physics. It helps to find energy value and various kind of wave function. The form of Hermite differential equation $$y''-2xy'+2ny=0\dotsm(1)$$

Things to Remember

  • $$y=\sum_{J=0}^N\frac{(-1)^J n! a_n x^{n-2J}}{2^{2J} J! (n-2J)!}$$

    Where N= n/2 for n\(\to\) even

    =n-1/2 for n\(\to\) odd

    This is the series solution of Hermite differential equation.

  • We have Hermite polynomial as,

    $$H_n(x)=y=\sum_{J=0}^N\frac{(-1)^J n! (2 x)^{n-2J}}{ J! (n-2J)!}$$

    Where N= n/2 for n\(\to\) even

    =n-1/2 for n\(\to\) odd

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Series solution and Hermite polynomial of Hermite differential equation

Series solution and Hermite polynomial of Hermite differential equation

Series solution :

For series solution (k=0)

we have recurrence relation as,

$$ a_{r+2}=\frac{-2 (n-r) a_r}{(r+1) (r+2)}$$

$$ a_r= \frac{-(r+1) (r+2)}{2(n-r) a_{r+2}}{2(n-r)}$$

Put r= n - 2

$$ a_{n-2}=\frac{-n(n-1) a_n}{2\cdot 2}$$

Put r=n-4,

$$ a_{n-4}=\frac{-(n-3) (n-2) a_{n-2}}{2\cdot 4}$$

$$=\frac{-(n-3)(n-2)}{2\cdot 4}\cdot \frac{(-n) (n-1) a_n}{2\cdot 2}$$

$$=(-1)^2 \frac{n(n-1)(n-2)(n-3)a_n}{2^2 \cdot 2\cdot 4}$$

Put r=n-6

$$ a_{n-6}=\frac{-(n-4)(n-5)a_{n-4}}{2\cdot 6}$$

$$= \frac{-(n-4)(n-5)}{2\cdot 6}\cdot \frac{(-1)^2 n(n-1) (n-2) (n-3) a_n}{2^2 \cdot 2\cdot 4}$$

$$=\frac{(-1)^3 n(n-1)(n-2) (n-3) (n-4) (n-5) \dotsm a_n}{(2)^3\cdot 2\cdot 4\cdot 6}$$

$$ a_{n-2J}=\frac{(-1)^Jn(n-1)(n-2)(n-3)(n-4)(n-5)\dotsm (n-2J+1) a_n}{2^J\cdot 2\cdot 4\cdot 6\dotsm 2J}$$

$$=\frac{(-1)^Jn(n-1)(n-2)(n-3)\dotsm (n-2J+1) a_n}{2^J\cdot 2\cdot 4\cdot 6\dotsm 2J}\times \frac{(2-2j-2)\dotsm 3.2.1}{(n-2J)(n_2J-1)(n-2J-2),\dotsm 3,2,1}$$

$$=\frac{(-1)^J\cdot n! a_n}{2^J \cdot 2 \cdot 4\cdot 6\dotsm 2J(n-2J)!}$$

$$=\frac{(-1)^J\cdot n! a_n}{2^J\cdot 2^J J!(n-2J)!}$$

$$=\frac{(-1)^J\cdot n! a_n}{2^{2J}\cdot J!(n-2J)!}$$

Now, solution of Hermite for even term is

$$ y= \sum_{r=0}^\infty a_r x^{k+r}$$

$$=\sum_{r=0}^\infty a_r x^r$$

$$=\sum_{j=0}^{\frac n2} a_{n-2J} x^{n-2J}$$

$$=\sum_{j=0}^{\frac n2} \frac{(-1)^J n! a_n}{2^{2J} J! (n-2J)!} x^{n-2J}$$

Now, for odd term, same solution is obtained but limit vary from 0 to \(\frac{n-1}{2}\) i.e.

$$y=\sum_{J=0}^{\frac{n-1}{2}} \frac{(-1)^J n! a_n x^{n-2J}}{2^{2J} J! (n-2J)!}$$

So, the complete solution is

$$y=\sum_{J=0}^N\frac{(-1)^J n! a_n x^{n-2J}}{2^{2J} J! (n-2J)!}$$

Where N= n/2 for n\(\to\) even

=n-1/2 for n\(\to\) odd

This is the series solution of Hermite differential equation.

For Hermite polynomial \(a_n= 2^n\) then above equation becomes

$$H_n(x)=y=\sum_{J=0}^N\frac{(-1)^J n! (2 x)^{n-2J}}{ J! (n-2J)!}$$

Where N= n/2 for n\(\to\) even

=n-1/2 for n\(\to\) odd

First four Hermite Polynomial:

We have Hermite polynomial as,

$$H_n(x)=y=\sum_{J=0}^N\frac{(-1)^J n! (2 x)^{n-2J}}{ J! (n-2J)!}$$

Where N= n/2 for n\(\to\) even

=n-1/2 for n\(\to\) odd

put, n=0 (even)

$$N=\frac02=0$$

$$H_0(x)=\sum_{J=0}^0\frac{(-1)^J 0! (2x)^{0-2J}}{(0-2J)!J!}$$

$$=\frac{(-1)^0 0! (2x)^0 }{0! 0!}=1$$

Put n=1 (odd)

$$ N=\frac{n-1}{2}=\frac{1-1}{2}=0$$

$$H_1(x)=\sum_{J=0}^0 \frac{(-1)^J 1! (2x)^{1-2J}}{(1-2J)! J!}$$

$$=\frac{(-1)^0 1! (2x)^{1-0}}{1! 0! }= 2x$$

Put n=2 (even)

$$N= \frac n2=1$$

$$H_2(x)=\sum_{J=0}^1\frac{(-1)^J 2! (2x)^{2-2J}}{(1- 2J)! J!}$$

$$=\frac{(-1)^0 2! (2x)^{2-0}}{(2-2\times 0) ! 0!} + \frac{(-1)^1 2! (2x)^{2-2\times 1}}{(2-2\times 1) ! 1!}$$

$$= 4x^2-2$$

Put n=3 (odd)

$$N=\frac{n-1}{2}$$

$$=\frac{3-1}{2}$$

$$=1$$

$$H_3(x)=\sum_{j=0}^1\frac{(-1)^J 3! (2x)^{3-2j)}}{(3-2J)! J!}$$

$$= \frac{(-1)^0 3! (2x)^3}{ 3! 0!}+\frac{(-1)^1 3! (2x)^1}{(3-2)! 1!}$$

$$= 8x^3- 12x$$

These are the first four polynomials of Hermite differential equation .

Reference:

  1. Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
  2. Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
  3. Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
  4. Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
  5. Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.

Lesson

Differential equations

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.