Recurrence relation and Rodrigue's formula of Legendre differential equation

Recurrence relation and Rodrigue's formula of Legendre differential equation were discussed above in this topic. While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form: $$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$ $$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$ This equation is called Legendre differential equation.

Summary

Recurrence relation and Rodrigue's formula of Legendre differential equation were discussed above in this topic. While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form: $$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$ $$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$ This equation is called Legendre differential equation.

Things to Remember

Important equation to be remember:

  •  Rodrigue's formula

 \(P_n(x)=\frac{1}{2^nn!} \frac{d^n}{dx^n}(x^2-1)^n\)

  • The generating function of Legendre polynomial is

$$(1-2xt+t^2)^{-\frac12}= \sum_{n=0}^\infty t^n P_n(x)$$

  • $$or,\;\; P_{n+1} = \frac{1}{n+1} \biggl[ P_n(x) x (1+2n) - nP_{n-1} (x)\biggr]$$

This is the first recurrence relation.

  • $$P_{n-1}(x)= P_n'(x) -2xP_{n-1}'(x)+ P_{n-2}'(x)$$

This is the 2nd recurrence relation of Legendre polynomial.

 

 

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Recurrence relation and Rodrigue's formula of Legendre differential equation

Recurrence relation and Rodrigue's formula of Legendre differential equation

Recurrence relation:

We know the generating function of Legendre polynomial is

$$(1-2xt+t^2)^{-\frac12}= \sum_{n=0}^\infty t^n P_n(x)$$

Differentiating on both side with respect to 't', we get,

$$-\frac12 (1-2xt+t^2)^{-\frac32}(-2x+2t)=\sum_{n=0}^\infty nt^{n-1} p_n(x)$$

$$or,\;\; (1-2xt+t^2)^{-\frac12}\times \frac{x-t}{(1-2xt+t^2)}=\sum_{n=0}^\infty nt^{n-1} p_n(x)$$

$$or,\;\; (x-t)\sum_{n=0}^\infty t^n p_n(x)=\sum_{n=0}^\infty nt^{n-1}p_n(x)-2x\sum_{n=0}^\infty n^{tn} \times p_n(x)+\sum_{n=0}^\infty nt^{n+1}p_n(x)$$

$$or,\;\; x\sum_{n=0}^\infty t^n P_n(x)-\sum_{n=0}^\infty t^{n+1}P_n(x)=\sum_{n=0}^\infty nt^{n-1} P_n(x)- 2x\sum_{n=0}^\infty nt^n P_n(x)+\sum_{n=0}^\infty nt^{n-1}P_n(x)$$

Now, comparing the coefficient of \(t^n\) on both sides, we get,

$$or,\;\; xP_n(x)-P_{n-1}(x) = (n+1) P_{n+1}(x)- 2x_n P_n(x)+ (n-1) P_{n-1} (x)$$

$$or,\;\; P_{n+1}=\frac{1}{n+1} \biggl[ xP_n(x) - P_{n-1}(x) + 2x_nP_n(x)-nP_{n-1}(x)+P_{n-1}(x)\biggr]$$

$$or,\;\; P_{n+1} = \frac{1}{n+1} \biggl[ P_n(x) x (1+2n) - nP_{n-1} (x)\biggr]$$

This is the first recurrence relation.

Again, we have

$$(1-2xt+t^2)^{-\frac12}=\sum_{n=0}^\infty t^n P_n(x)$$

Now , differentiating both sides with respect to x, we get,

$$-\frac12 (1-2xt+t^2)^{-\frac32}\times (-2t) = \sum_{n=0}^\infty t^n P_n'(x)$$

$$or,\;\; (1-2xt+t^2)^{-\frac12} \times \frac{t}{(1-2xt+t^2)}=\sum_{n=0}^\infty t^n P_n'(x)$$

$$or,\;\;\sum_{n=0}^\infty t^n P_n(x) t=\sum_{n=0}^\infty t^n P_n'(x) -2x\sum_{n=0}^\infty t^{n+1} P_n'(x)+\sum_{n=0}^\infty t^{n+2} P_n'(x)$$

$$or\;\;\sum_{n=0}^\infty t^{n+1} P_n(x)=\sum_{n=0}^\infty t^n P_n'(x)- 2x\sum_{n=0}^\infty t^{n+1} P_n'(x)+\sum_{n=0}^\infty t^{n+2} P_n'(x)$$

Now, collecting the coefficient of \(t^n\) on both sides, we get

$$P_{n-1}(x)= P_n'(x) -2xP_{n-1}'(x)+ P_{n-2}'(x)$$

This is the 2nd recurrence relation of Legendre polynomial.

Note: We know the generating function of Legendre polynomial is,

$$(1-2xt+t^2)^{-\frac12}=\sum_{n=0}^\infty t^n P_n(x)\dotsm(1)$$

Put \(x=\frac{e^{i\theta}+ e^{-i\theta}}{2}+cos\theta\)

$$or,\;\; \sum_{n=0}^\infty t^n P_n(cos\theta)=\biggl[1-\frac{2(e^{i\theta}+e^{-i\theta}}{2}t+t^2-1\biggr]^{-\frac12}$$

$$ = [1- te^{i\theta}-te^{-i\theta}+t^2\cdot e^{i\theta}\cdot e^{-i\theta}\biggr]^{-\frac12}$$

$$= [1(1-te^{-i\theta})-te^{-i\theta}(1-te^{i\theta}]^{-\frac12}$$

$$=[(1-te^{-i\theta})(1-te^{i\theta})]^{-\frac12}$$

$$=\biggl[1+\frac{1}{1!}\frac12te^{-i\theta}+\frac{1}{2!}\frac12\frac32t^2e^{-2i\theta}+\frac{1}{3!}\frac12\frac32\frac52t^3e^{-3i\theta}+\dotsm]\times[1+\frac{1}{1!}\frac12 te^{i\theta}+\frac{1}{2!}+ \frac{1}{2!}\frac12\frac32 t^2e^{2i\theta}+\frac{1}{3!}\frac12\frac32\frac52t^3e^{3i\theta}+\dotsm\biggr]$$

Comparing the coefficient of \(t^0\) on both sides, we get

or, \(P_0(cos\theta)=1\)

or, \(P_1(cos\theta)=\frac12 e^{i\theta}+\frac12 e^{-i\theta}\)

or, \(p_1(coos\theta)=\frac12 (e^{i\theta}+e^{i\theta})=cos\theta\)

or, \(p_2(cos\theta)=\frac{1}{2!}\frac12\frac32 e^{2i\theta}+\frac{1}{2!}\frac12\frac32e^{-2i\theta}+\frac14(e^{-i\theta}e^{i\theta}\)

or, \(p_2(cos\theta)= \frac34 \biggl(\frac{e^{2i\theta}+e^{-2i\theta}}{2}\biggr)+\frac14\)

or \(p_2(cos\theta)= \frac34 cos2\theta+\frac14\)

Rodrigue's formula:

\(P_n(x)=\frac{1}{2^nn!} \frac{d^n}{dx^n}(x^2-1)^n\)

Suppose \(\phi=(x^2-1)^n\)

Differentating both sides with respect to x, we get

$$\frac{d\phi}{dx}=n(x^2-1)^{n-1} \times 2x$$

$$=2nx(x^2-1)^{n-1}$$

Multiplying both sides by \((x^2-1)\), we get,

$$or,\;\; (x^2-1) \frac{d\phi}{dx}=2nx(x^2-1)n$$

$$or,\;\; (x^2-1)\frac{d\phi}{dx}=2nx\phi$$

$$or,\;\; -(1-x^2)\frac{d\phi}{dx}=2nx\pi$$

$$or(1-x^2)\frac{d\phi}{dx}+2nx\phi=0$$

Now, diff. both sides with respect to x, we get,

$$or,\;\; (1-x^2)\frac{d^2\phi}{dx^2}-2x\frac{d\phi}{dx}+2nx\frac{d\phi}{dx}+2n\phi=0$$

$$or,\;\; (1-x^2)\frac{d^2\phi}{dx^2}-2x(1-n)\frac{d\phi}{dx}+2n\phi=0$$

Diff booth sides with respect to x for n times using leibnitz theorem.

$$or,\;\; (1-x^2)\frac{d^{2+n}\phi}{dx^{2_n}}+n(-2x) \frac{d^{1+n}\phi}{dx^{1+n}}+\frac{n(n-1)}{2}\cdot (-2)\frac{d^n\phi}{dx^n}-2x(1-n)\frac{d^{1+n}\phi}{dx^{1+n}} -2(1-n)\cdot n\frac{d^n\phi}{dx^n}+2n\cdot \frac{d^n\phi}{dx^n}=0$$

Put\(\frac{d^n}{dx^n}=\psi\)

or, \( P_n(x)=\frac{d^n\phi}{dx^n}\)

or, \(cP_n(x)=\frac{d^n}{dx^n}(x^2-1)^n\dotsm(1)\)

or \(cP_n(x)=\frac{d^n}{dx^n}[(x-1)^n(x+1)^n]\)

or \(CP_n(x)= (x-1)^n \frac{d^n}{dx^n}(x+1)^n+(x+1)^n\frac{d^n}{dx^n}(x-1)^n\)

or \(CP_n(x)= (x-1)^n n! +(x+1)^n n!\)

or \(CP_n(x)= (x-1)^n n!+(x+1)^n n!\)

put x=1

or \(CP_n(1)= 2^n n!\)

or\( C\cdot 1= 2^n.n!\)

or \( C= 2^n\cdot n!\)

Now from equation (a)

\(CP_n(x)=\frac{d^n}{dx^n}(x^2-1)n\)

\(P_n(x)=\frac{1}{2^n\cdot n!}\frac{d^n}{dx^n}(x^2-1)^n\)

Reference:

  1. Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
  2. Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
  3. Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
  4. Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
  5. Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.

Lesson

Differential equations

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.