Polynomial solution,Generating function of Legendre differential equation

Polynomial solution and Generating function of Legendre differential equation were discussed above in this topic. While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form: $$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$ $$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$ This equation is called Legendre differential equation.

Summary

Polynomial solution and Generating function of Legendre differential equation were discussed above in this topic. While solving Helmhotz equation in spherical polar co-ordinate we encounter with a spherical kind of differential equation of the form: $$(1-x^2) \frac{d^2y}{dx^2} - 2x \frac{dy}{dx}+ n(n+1) y=0\dotsm(1)$$ $$or,\;\; \frac{d}{dx}\biggl[(1-x^2)\frac{dy}{dx}\biggr]+n(n+1)y=0$$ This equation is called Legendre differential equation.

Things to Remember

Important equations to be remember

  • The generating function fo Legendre differential equation is

    $$(1-2xt+t^2)^{-\frac12}=\sum_{n=0}^\infty t^n p_n(x)$$

  • The polynomial solution for Legendre differential equation

    $$P_n(x) = \sum_{j=0}^N \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^n J! (n-2j)! (n-j)!}$$

    Where N=n/2 for even and n-1/2 for odd

  • \(P_n(-x)= (-1)^n P_n(x)\)
  • $$P_1(x)= \sum_{j=0}^0 \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^nJ!(n-j)! (n-2j)!}$$

    Similarly, \( P_2(x)= \frac13 (3x^2-1)\)

    and \(P_3(x)= \frac12 (5s^3-3x)\)

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Polynomial solution,Generating function of Legendre differential equation

Polynomial solution,Generating function of Legendre differential equation

Polynomial solution :

For polynomial solution, we proceed from solution for k=n, we have

$$ a_{2j}= \frac{(-1)^j n(n-1)(n-2)\dotsm (n-2j+1)a_0}{2\cdot 4\dotsm 2j(2n-1)(2n-3)\dotsm(2n-2j+1)}$$

The solution is

$$y=\sum_{j=0}^\infty a_{2j}x^{n-2j}$$

$$y=\sum_{j=0}^\infty\frac{(-1)^j n(n-1)(n-2)\dotsm (n-2j+1)a_0 x^{n-2j}}{2\cdot 4\dotsm 2j(2n-1)(2n-3)\dotsm(2n-2j+1)}$$

$$=\sum_{j=0}^\infty\frac{(-1)^j n(n-1)(n-2)\dotsm (n-1j+1)x^{n-2j}}{2^j J! (2n-1)(2n-3)\dotsm (2n-2j+1)}\times \frac{1\cdot 3\cdot 5\dotsm(2n-1)}{n!}$$

$$=\sum_{j=0}^\infty \frac{(-1)^j(2n-2j-1)\dotsm 5\cdot 3\cdot 1}{2j J!(n-2j) \dotsm 3\cdot 2\cdot 1}x^{n-2j}$$

$$=\sum_{j=0}^\infty \frac{(-1)^j(2n-2j-1)\dotsm 5\cdot 3\cdot 1}{2j J!(n-2j) !}x^{n-2j}\times \frac{2n-2j\dotsm 6\cdot 4\cdot 2}{(2n-2j)\dotsm 6\cdot 4\cdot 2}$$

$$=\sum_{j=0}^\infty \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^j J! (n-2j)! 2^{n-j} (n-j)!}$$

$$=\sum_{j=0}^\infty \frac{(-1)^j (2n_2j)! x^{n-2j}}{2^nJ! (n-2j)!(n-j)!}$$

$$or\;\; P_n(x)=\sum_{j=0}^{\frac n2} \frac{(-1)^j\cdot (2n-2j)! x^{n-2j}}{2^n J! (n-2j)! (n-j)!}$$

The polynomial solution is

$$P_n(x) = \sum_{j=0}^N \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^n J! (n-2j)! (n-j)!}$$

Where N=n/2 for even and n-1/2 for odd

Put n=0

$$P_0(x)=\sum_{j=0}^0 \frac{(-1)^J (2n-2j)! x^{n-2j}}{2^n J! (n-j)! (n-2j)!}$$

$$=\frac{1\times 0! \times x^0}{1\times 0! \times 0! 0!}=1$$

Put n=1

\(N=\frac{1-1}{0}=0\)

$$P_1(x)= \sum_{j=0}^0 \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^nJ!(n-j)! (n-2j)!}$$

Similarly, \( P_2(x)= \frac13 (3x^2-1)\)

and \(P_3(x)= \frac12 (5s^3-3x)\)

Prove: \(P_n(-x)= (-1)^n P_n(x)\)

We know the polynomial solution for Legendre differential equation

$$P_n(x) = \sum_{j=0}^N \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^n J! (n-2j)! (n-j)!}$$

Where N=n/2 for even and n-1/2 for odd

substituting x\(\to\) -x

$$P_n(x = \sum_{j=0}^N \frac{(-1)^j (2n-2j)! (-x)^{n-2j}}{2^n J! (n-j)! (n-2j)!}$$

$$=\sum_{j=0}^N\frac{(-1)^j (2n-2j)! (-1)^{n-2j} x^{n-2j}}{2^n J! (n-J)! (n-2J)!}$$

$$=(-1)^n \sum_{j=0}^n \frac{(-1)^j (2n-2j)! x^{n-2j}}{2^n J! (n-J)! (n-2J)!}$$

Generating function of Legendre differential equation:

Prove that the generating function fo Legendre differential equation is

$$(1-2xt+t^2)^{-\frac12}=\sum_{n=0}^\infty t^n p_n(x)$$

L.H.S

$$(1-2xt+t^2)^{-\frac12}$$

$$=[1-(2xt-t^2)]^{-\frac12}$$

$$=1+\frac{1}{1!}+\frac{1}{2} (2xt-t^2) +\frac{1}{2!} \frac12\frac32(2xt-t^2)^2+\frac13\frac12\frac32\frac52(2xt-t^2)^3+\dotsm+\frac{1}{5} \frac{1\cdot\3\cdot5\dotsm(2s-1)}{2s}$$

$$=\sum_{s=0}^\infty \frac{1}{s!}\frac{1.3.5... 2s-1}{2s} (2xt-t^2)^s \times(2xt -t^2)^s\times \frac{2.4.6...2s}{2.4.6...2s}$$

$$=\sum_{s=0}^\infty \frac{1}{s!} \frac{2s}{2^s 2^s s!}(2st-t^2) ^s$$

Let us have,

$$(2xt-t^2)^s=c(s,0)(2xt)^s(t^2)^0+c(s,1)(2xt)^{s-1} (-t)^1 + c(s,2)(2xt)^{s-2} (-t^2)^2+\dotsm + c(s,t)(2xt)^{s-1} (-t)^1+\dotsm c(s,s) (2xt)^0 (-t^2)^s$$

$$(2xt-t^2)^s=\sum_{j=0}^s c(s,j) (2xt)^{s-j} (-t^2)^j$$

$$=\sum_{j=0}^s \frac{s!}{(s-j)!j!} (2xt)^{s-j} (-t^2)^j$$

$$=\sum_{j=0}^s \frac{(-1)^j s!}{(s-j)!j! } 2^{s-j} x^{s-j} t^{s+j}$$

Now,

L.H.S

$$\sum_{s=0}^\infty \frac{1}{s!} \frac{(2s)!}{2^{2s}S!}\sum_{j=0}^s \frac{(-1^j s! 2^{s-j} x^{s-j} t^{s+j}}{(s-j)! J!}$$

$$=\sum_{s=0}^\infty \sum_{j=0}^s \frac{(-1))^j (2s!) x^{s-j}+ t^{s+j}}{s!(s-j)! j! 2^{s+j}}$$

Put, s+j=n , s=n-j

$$=\sum_{n=0}^\infty \biggl[ \sum_{j=0}^{\frac n2} \frac{(-1)^j (2n-2j)! x^{n-2j} t^n}{J! (n-j)! (n-2j)! 2^n}\biggr]$$

$$\sum_{n=0}^\infty t^n p_n(x)=R.H.S$$

Reference:

  1. Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
  2. Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
  3. Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
  4. Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
  5. Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.

Lesson

Differential equations

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.