Integral form of Bessel polynomial and orthogonality of Bessel differential equation

Integral form of Bessel polynomial and Orthogonality of Bessel differential equtions were discussed in this chapter. We encounter Bessel differential equation while solving Helmoltz equation in cylindrical polar co-ordinate system. The form of Bessel differential equation is $$x^2\frac{d^2y}{dx^2}+ x\frac{dy}{dx}+(x^2-n^2)y=0\dotsm(1)$$

Summary

Integral form of Bessel polynomial and Orthogonality of Bessel differential equtions were discussed in this chapter. We encounter Bessel differential equation while solving Helmoltz equation in cylindrical polar co-ordinate system. The form of Bessel differential equation is $$x^2\frac{d^2y}{dx^2}+ x\frac{dy}{dx}+(x^2-n^2)y=0\dotsm(1)$$

Things to Remember

Equation to be remember:

  • $$\int_0^p rJ_n(ar) J_n(br) dr=0$$

    This is the orthogonality property of Bessel differential equation.

     

  • The form of  Bessel differential equation

    $$x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+(x^2-n^2)y=0$$

  • the generating function of Bessel polynomial:

    $$e^{\frac12 x(t-1/t)}=\sum_{n=-\infty}^\infty t^n J_n(x)$$

  • $$J_n(x)=\frac{1}{\pi}\int_0^\pi cos(xsin\theta- n\theta) d\theta$$

MCQs

No MCQs found.

Subjective Questions

Q1:

What did the wind ask the leaves to do?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>The &nbsp;wind ask the leaves to come over the grassland to play.</p>

Q2:

How do the leaves look when they are old and ready to drop?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>The leaves look red and gold when they are old and ready to drop.</p>

Q3:

Why were the leaves so satisfied to come down?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>The leaves are satisfied to come down because winter called them for sleep.</p>

Q4:

When did the snow lay the bedspread over them?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>In the winter after they went to earthy beds, snow lay the bedspread over them.</p>

Q5:

Find the words that rhyme with the following words.

 

day-------,

cold------,

all--------,

flew-----,

beds----,

 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Answers:</p>
<p>Day---Play</p>
<p>Cold---Gold</p>
<p>All---Call</p>
<p>Flew---Knew</p>
<p>Beds---Heads</p>

Videos

No videos found.

Integral form of Bessel polynomial and orthogonality of Bessel differential equation

Integral form of Bessel polynomial and orthogonality of Bessel differential equation

Integral form of Bessel polynomial:

We know, the generating function of Bessel polynomial as,

$$e^{\frac12 x(t-1/t)}=\sum_{n=-\infty}^\infty t^n J_n(x)$$

Put \(t=e^{i\theta}\) then,

$$or,\;\; e^{\frac12 x(e^{i\theta}-e^{-i\theta})}= \sum_{n=-\infty}^\infty e^{in\theta}J_n(x)$$

$$or,\;\; e^{ixsin\theta}=…+ e^{-4i\theta} J_{-4}(x)+ e^{-3i\theta} J_{-3} (x)+ e^{-2i\theta}J_{n-2}(x)+ e^{-1i\theta}J_{n-1}(x)+ J_0(x)+ e^{i\theta} J_1(x)+ e^{2j\theta}J_2(x)+e^{3i\theta}J_3(x)+ e^{4i\theta}J_4(x)+…$$

$$or,\;\; e^{ixsin\theta}=J_0(x)+ e^{i\theta}J_1(x)+ e^{2i\theta}J_2(x)+e^{-2i\theta}J_2(x)+ e^{3i\theta}J_3(x)- e^{-3i\theta}J_3(x)+ e^{4i\theta}J_4(x)+ e^{-4i\theta}J_4(x)+…$$

$$or,\;\; e^{ixsin\theta}= J_0(x)+(e^{i\theta}-e^{-i\theta}) J_1(x)+ (e^{2i\theta}+e^{-2i\theta})J_2(x)+ (e^{3i\theta}- e^{-3i\theta})J_3(x)+(e^{4i\theta}-e^{-4i\theta})J_4(x)+…$$

$$or,\;\; e^{ixsin\theta}= J_0(x)+ 2isin\theta J_1(x)+ 2cos2\theta J_2(x)+2isin3\theta-J_3(x)+2cos4\theta\cdot J_4(x)+…$$

$$or,\;\; cos(xsin\theta)+isin(xsin\theta)= J_0(x)+2cos2\theta\cdot J_2(x)+2cos4\theta\cdot J_4(x)+…+ i(2sin\theta\cdot J_1(x))+ 2sin3\theta\cdot J_3(x)+…$$

Comparing real and imaginary part, we get

For even n

$$ cos(xsin\theta) = J_0(x)+ 2cos2\theta\cdot J_2(x)+ 2cos4\theta\cdot J_4(x)+…+2cosn\theta\cdot J_n(x)$$

For odd n

$$ sin(xsin\theta)= 2sin\theta\cdot J_1(x)+ 2sin3\theta\cdot J_3(x)+…+2sinn\theta\cdot J_n(x)$$

Now multiplying equation (1) by \(cosm\theta\) on both side and integrating with respect to \(\theta\) from 0 to \(\pi\) we get,

For m\(\ne\)0

$$\int_0^\pi cos(xsin\theta)\cdot cosm\theta d\theta= \int_\pi^0 \pi J_n(x)\dotsm(3) $$

For m=n

$$\int_0^\pi 2cosn\theta\cdot J_n(x)\cdot cosm\theta d\theta= J_n(x)\int_0^\pi 2cosn\theta\cdot cosm\theta d\theta$$

$$=J_n(x)\int_0^\pi 2cosn\theta\cdot cosm\theta d\theta$$

$$=J_n(x) \int_0^\pi [cos(m+n) \theta+ cos(n-m) \theta] d\theta$$

$$=J_n(x) \int_0^\pi[cos2n\theta+1]d\theta$$

$$= \pi J_n(x)$$

Now, multiplying equation (2), by \(sinm\theta\) and integrate with respect to \(\theta\) from 0 to \(\pi\), we get,

$$\int_0^\pi sin(xsin\theta)\cdot sinm\theta d\theta= \int_\pi^0 J_n(x)\dotsm(4)$$

Now adding equation (3) and (4) we get,

$$\int_0^pi [cos(xsin\theta)\cdot cosn\theta + sin(xsin\theta)\cdot sinn\theta] d\theta= \pi J_n(x)$$

$$J_n(x)=\frac{1}{\pi}\int_0^\pi cos(xsin\theta- n\theta) d\theta$$

Orthogonality of Bessel differential equation:

We know the Bessel differential equation has the form

$$x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+(x^2-n^2)y=0\dotsm(1)$$

Since y=J_n(x) so,

$$ x^2\frac{d^2J_n(x)}{dx^2}+ x\frac{dJ_n(x)}{dx}+(x^2-n^2) J_n(x)=0\dotsm(2)$$

Put x= ar

$$ a^2r^2\frac{d^2J_n(ar)}{d(ar)^2}+ar\cdot \frac{dJ_n(ar)}{d(ar)}+(a^2 r^2-n^2)J_n(ar)=0$$

$$or,\;\; r^2\cdot\frac{d^2J_n(ar)}{dr^2}+r\cdot \frac{dJ_n(ar)}{dr}+(a^2r^2-n^2)J_n(ar)=0\dotsm(3)$$

For x=br,

$$ r^2\cdot \frac{d^2J_n(br)}{dr^2}+r\cdot \frac{dJ_n(br)}{dr}+(b^2r^2-n^2)J_n(br)=0\dotsm(4)$$

Now, multiplying equation (5) by \(\frac{J_n(br)}{r}\) and (4) by \(\frac{J_n(ar)}{r} \)and subtracting (3)-(4), we get,

$$or,\;\; r\cdot J_n(br)\frac{d^2J_n(ar)}{dr^2}- r J_n(ar)\cdot \frac{d^2J_n(br)}{dr^2}+J_n(br)\frac{dJ_n(ar)}{ar}-J_n(ar)\cdot \frac{dJ_n(br)}{dr}+ (a^2-b^2)r\cdot J_(ar)\cdot J_n(br)=0$$

Integrating above equation with respect to 'r' from 0 to P, we get,

$$or,\;\; \int_0^p\frac{d}{dr}\biggl[rJ_n(br)\cdot\frac{dJ_n(ar)}{dr}-rJ_n(ar)\cdot \frac{dJ_n(br)}{dr}\biggr]dr+(a^2-b^2)\int_0^p r\cdot J_n(ar) \cdot J_n(br)dr=0$$

$$or,\;\; \biggl| r. J_n(br)\cdot \frac{dJ_n(ar)}{dr}-r J_n(ar)\cdot \frac{dJ_n(br)}{dr}\biggr|_0^p+ (a^2-b^2)\int_0^p r\cdot J_n(ar)\cdot J_n(br) dr=0$$

$$or,\;\; (a^2-b^2)\int_0^p r\cdot J_n(ar)\cdot J_n(br)dr=0$$

For a\(\ne\)b

$$\int_0^p rJ_n(ar) J_n(br) dr=0$$

This is the orthogonality property of Bessel differential equation.

Reference:

  1. Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
  2. Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
  3. Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
  4. Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
  5. Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.

Lesson

Differential equations

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.