Generating function, Recurrence relation and Rodrigues formula of Laguerre's Differential Equation
Generating function, Recurrence relation and Rodrigues formula of Laguerre's Differential Equation were discussed in this chapter.While solving quantum theory of rigid rotator we encounter with a special kind of differential equation which has a form of $$ x\frac{d^2}{dx^2}+(1-x)\frac{dy}{dx}+ny=0$$ called Laguerre's differential equation.
Summary
Generating function, Recurrence relation and Rodrigues formula of Laguerre's Differential Equation were discussed in this chapter.While solving quantum theory of rigid rotator we encounter with a special kind of differential equation which has a form of $$ x\frac{d^2}{dx^2}+(1-x)\frac{dy}{dx}+ny=0$$ called Laguerre's differential equation.
Things to Remember
Equations to be remember:
-
The generating function of Laguerre polynomial is
$$\frac{1}{1-t}e^{\frac{-xt}{1-t}}=\sum_{x=0}^\infty t^n t_n(x)$$
-
The generating function of lagueree polynomial is
$$\frac{1}{1-t}e^{\frac{-xt}{1-t}}=\sum_{n=0}^\infty t^n L_n(x)$$
-
$$L_{n-1}(x)= L_{n-1}'(x)- L_n'(x)$$
This is the 2nd recurrence relation of Laguree polynomial.
- $$L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}(x^n e^{-x})$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Generating function, Recurrence relation and Rodrigues formula of Laguerre's Differential Equation
Generating function of Laguerre's Differential equation:
The generating function of Laguerre polynomial is
$$\frac{1}{1-t}e^{\frac{-xt}{1-t}}=\sum_{x=0}^\infty t^n t_n(x)$$
L.H.S
$$\frac{1}{1-t}e^{\frac{-xt}{1-t}}=\frac{1}{1-t}\biggl[1+\frac{\biggl(\frac{-xt}{1-t}\biggr)}{1!}+\frac{\biggl(\frac{-xt}{1-t}\biggr)^2}{2!}+\dotsm\biggr]$$
$$or,\;\;\;\;\;\;\frac{1}{1-t}\sum_{j=0}^\infty\frac{\biggl(\frac{-xt}{1-t}\biggr)^j}{j!}=\sum_{j=1}^\infty\frac{(-1)^jx^jt^j}{(1-t)^{j+1}J!}$$
Now take,
$$\frac{1}{(1-t)^{1+j}}=(1-t)^{-(1+j)}$$
$$=1+\frac{(1+J)t}{1!}+\frac{(1+J)(2+J)t^2}{2!}+ \frac{(1+J)(2+J)(3+J)t^3}{3!}+\dotsm+\frac{(1+J)(2+J)\dotsm(J+s)+s}{s!}+\dotsm$$
$$=\sum_{s=0}^\infty\frac{(J+1)(J+2)\dotsm(J+s)t^s}{s!}\times\frac{J(J-1)(J-2)\dotsm 3.2.1}{J(J-1)(J-2)\dotsm 3.2.1}$$
$$=\sum_{s=0}^\infty \frac{(J+s)!t^s}{s!J!}$$
L.H.S
$$\sum_{j=0}\infty\frac{(-1)^J x^J t^J}{J!}\times \sum_{s+0}^\infty\frac{(J+S)!t^s}{s!J!}$$
$$\sum_{j=0}^\infty \sum_{s=0}^\infty \frac{(-1)^J x^J t^{J+S}}{(J!)^2S!}(J+S)!$$
Put J+S=n
$$=\sum_{n=0}^\infty \biggl[\sum_{j=0}^n \frac{(-1)^J x^J n!}{(J!)^2 (n-J)!}\biggr]t^n$$
$$=\sum_{n=0}^\infty \biggl[\sum_{j=0}^n \frac{(-1)^J x^J n!}{(J!)^2 (n-J)!}\biggr]t^n$$
$$=\sum_{n=0}^\infty L_n(x) t^n$$
$$R.H.S$$
Recurrence relation of Lagueree polynomial:
We know, the generating function of lagueree polynomial is
$$\frac{1}{1-t}e^{\frac{-xt}{1-t}}=\sum_{n=0}^\infty t^n L_n(x)\dotsm(1)$$
$$or\;\; e^{\frac{-xt}{1-t}}=\sum_{n=0}^\infty t^n L_n(x)-\sum_{n=0}^\infty t^{n+1}L_n(x)$$
Differentiating both sides with respect to 't', we get,
$$or,\;\; e^{\frac{-xt}{1-t}} (-x)\biggl[\frac{(1-t)\cdot (1-t) \cdot (-1)}{(1-t)^2}\biggr]=\sum_{n=0}^\infty nt^{n-1}L_n(x)-\sum_{n=0}^\infty (n+1)t^nL_n(x)$$
$$or,\;\; \frac{1}{1-t} \cdot e^{\frac{-xt}{1-t}}\cdot (-x)\biggl[\frac{1}{1-t}\biggr]=\sum_{n=0}^\infty nt^{n-1}L_n(x)-\sum_{n=0}^\infty(n+1)t^nL_n(x)$$
$$or,\;\;(-x) \sum_{n=0}^\infty t^n L_n(x)=\sum_{n=0}^\infty n\cdot t^{n-1} L_n(x)- \sum_{n=0}^\infty ntL_n(x)-\sum_{n=0}^\infty (n+1) t^n L_n(x) +\sum_{n=0}^\infty (n+1) t^{n+1}L_n(x)$$
From equation(1)
Now collecting the coefficient of \(t^n\) on both side. We get
$$or,\;\; (-x)L_n(x)=(n+1) L_{n+1}(x)-nL_n(x)-(n+1)L_n(x)+nL_{n-1}(x)$$
$$or\;\; e^{\frac{-xt}{1-t}}= (1-t) \sum_{n=0}^\infty t^nL_n(x)$$
$$or\;\; e^{\frac{-xt}{1-t}\times \frac{-t}{1-t}}=(1-t) \sum_{n=0}^\infty t^nL_n'(x)$$
$$or\;\; \sum_{n=0}^\infty t^{n+1} L_n(x)= \sum_{n=0}^\infty t^n L_n'(x)- \sum_{n=0}^\infty t^{n+1} L_n'(x)$$
Now, collecting the coefficient of \(t^n\) on both sides, we get,
$$-L_{n-1}(x)= L_n'(x)- L_{n-1}'(x)$$
$$L_{n-1}(x)= L_{n-1}'(x)- L_n'(x)$$
This is the 2nd recurrence relation of Laguree polynomial.
Rodrigues Formula:
We know, the generating function of Laguree polynomial is,
$$\frac{1}{1-t}e^{\frac{-xt}{1-t}}=\sum_{n=0}^\infty t^nL_n(x)$$
$$or, \sum_n=0^\infty t^n L_n(x)=\frac{1}{1-t} e^{\frac{-xt}{1-t}}$$
Differentiating both sides with respect to 't' for 'n' times and take limit t\(\to\ 0\)
$$\lim_{t\to0} \frac{d^n}{dt^n}\sum_{n=0}^\infty t^nL_n(x)=\lim_{t\to0}\frac{d^n}{dt^n}\biggl[\frac{1}{1-t} e^{\frac{-xt}{1-t}}\biggr]$$
$$or, \; 0+n!L_n(x)+0=\lim_{t\to0}\frac{d^n}{dt^n}\biggl[\frac{1}{1-t}\cdot e^{\frac{-xt}{1-t}}\biggr]$$
$$or,\; n!L_n(x)=\lim_{t\to0} \frac{d^n}{dt^n}\biggl[\frac{1}{1-t}e^{\frac{x(1-t-1}{1-t}}\biggr]$$
$$=e^x\lim_{t\to0}\frac{d^n}{dt^n}\biggl[\frac{1}{1-t} e^{frac{-x}{1-t}}\biggr]$$
$$=e^x\lim_{t\to0}\frac{d^n}{dt^n}\biggl[\frac{1}{1-t}\sum_{j=0}^\infty \frac{(\frac{-x}{1-t})^j}{j!}\biggr]$$
$$=\frac{e^x}{n!} \lim_{t\to0} \frac{d^n}{dt^n} \biggl[\sum_{j=0}^\infty \frac{(-1)^j x^j}{j!(1-t)^{j+1}}\biggr]$$
$$or,\;L_n(x)=\frac{e^x}{n!}\lim_t\to0 \sum_{j=0}^\infty \frac{(-1)^j x^j}{j!}\times\frac{(j+1)(j+2)\dotsm (j+n)}{(1-t)^{j+n-1}}$$
$$\frac{e^x}{n!}\sum_{j=0}^\infty \frac{(-1)^j x^j(j+1)(j+2)\dotsm(j+n)}{j!}\times \frac{j(j-1)(j-2)\dotsm 3.2.1}{j(j-1)(j-2)\dotsm 3.2.1)}$$
$$=\frac{e^x}{n!}\sum_{j=0}^\infty \frac{(-1)^j x^j (j+n)!}{j!j!}\dotsm(1)$$
Let us take,
$$\frac{d^n}{dx^n}(x^ne^{-x})$$
$$=\frac{d^n}{dx^n}\biggl(x^n \sum_{j=0}^\infty \frac{(-x)^j}{j!}\biggr)$$
$$=\frac{d^n}{dx^n}\biggl(\sum_{J=0}^\infty \frac{(-1)^j x^{n+1}}{j!}\biggr)$$
$$=\sum_{j=0}^\infty \frac{(-1)^j}{j!}\times (n+j) (n+j-1)\dotsm (j+1)x^j$$
$$=\sum_{j=0}^\infty \frac{(-1)^j}{j!} x^j (n+j) (n+j-1)\dotsm j+1\times \frac{(j-1)\dotsm 3.2.1}{j(j-1)\dotsm 3.2.1}$$
$$=\sum_{j=0}^\infty \frac{(-1)^j x^j (j+n)!}{j! j!}\dotsm(2)$$
Now from equation (1) and (2) we get,
$$L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}(x^n e^{-x})$$
Reference:
- Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
- Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
- Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
- Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
- Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.
Lesson
Differential equations
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.