Generating function of Bessel polynomial and Recurrence relation
We discussed about Generating function of Bessel differential equation and Reccurence relation in this chapter. We encounter Bessel differential equation while solving Helmoltz equation in cylindrical polar co-ordinate system. The form of Bessel differential equation is $$x^2\frac{d^2y}{dx^2}+ x\frac{dy}{dx}+(x^2-n^2)y=0\dotsm(1)$$
Summary
We discussed about Generating function of Bessel differential equation and Reccurence relation in this chapter. We encounter Bessel differential equation while solving Helmoltz equation in cylindrical polar co-ordinate system. The form of Bessel differential equation is $$x^2\frac{d^2y}{dx^2}+ x\frac{dy}{dx}+(x^2-n^2)y=0\dotsm(1)$$
Things to Remember
Important equation to be remember
-
The generating function of Bessel polynomial is given by
\( e^{\frac12 (t-1/t)}\) and is given by \( e^{\frac12 (t-1/t)}=\sum_{n=-\infty}^\infty t^n J_n(x)\)
-
$$ xJ_n(x) + xJ_{n+2}(x)= 2(n+1) J_{n+1} (x)$$
This is the first recurrence relation.
-
$$J_{n-1} (x)= J_{n+1} (x)= 2J_n'(x)$$
This is second recurrence relation.
- $$\frac{d}{dx}(x^n J_n(x))= x^n J_{n-1}(x)$$
- $$J_1(x)= -J_0'(x)$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Generating function of Bessel polynomial and Recurrence relation
Generating function of Bessel polynomial:
The generating function of Bessel polynomial is given by
\( e^{\frac12 (t-1/t)}\) and is given by \( e^{\frac12 (t-1/t)}=\sum_{n=-\infty}^\infty t^n J_n(x)\)
Solution:
L.H.S
$$ e^{\frac12 (t-1/t)}$$
$$=e^{\frac{xt}{2}}\cdot e^{\frac{-x}{2t}}$$
$$=\biggl[1+\frac{(xt/2)^1}{1!}+\frac{(xt/2)^2}{2!}+…+\frac{(xt/2)^r}{r!}+…\biggr]\biggl[1+\frac{(-x/2t)^1}{1!}+\frac{(-x/2t)^2}{2!}+…+\frac{(-x/2t)^s}{s!}+…\biggr]$$
$$=\sum_{r=0}^\infty\frac{(xt/2)^r}{r!}\cdot \sum_{s=0}^\infty \frac{(-x/2t)^2}{s!}$$
$$=\sum_{r=0}^\infty \sum_{s=0}^\infty \frac{(-1)^s(x/2)^{r+s} t^{r-s}}{r!s!}$$
Put, r-s=n
$$\to r= n + s$$
$$= \sum_{n=0}^\infty \biggl[ \sum_{s=0}^\infty \frac{(-1)^s (x/2)^{n+2s}}{n+s)!s!}\biggr]t^n$$
$$=\sum_{n=0}^\infty J_n(x)t^n\dotsm(1)$$
Similarly, collecting the coefficient of \(t^{-n}\), we get
$$ e^{\frac12 x(t-1/t)}=\sum_{n=0}^\infty J_n(x) t^{-n}\dotsm(2)$$
Combining (1) and (2) we get,
$$ e^{\frac12 x(t-1/t)}= \sum_{n=-\infty}^\infty t^nJ_n(x)$$
Recurrence relation:
We know the generating function of Bessel polynomial
$$ e^{\frac12 x(t-1/t)}= \sum_{n=-\infty}^\infty t^nJ_n(x)$$
Now, differentiating equation (1) with resect to 't' we get
$$or,\;\; e^{\frac12 x(t-1/t)}\cdot \frac12 x(1+\frac{1}{t^2})= \sum_{n=-\infty}^\infty nt^{n-1} J_n(x)$$
$$or,\;\; \frac12 x \sum_{-\infty}^\infty t^n J_n(x) (1+\frac{1}{t^2}) = \sum_{-\infty}^\infty nt^{n-1} J_n(x)$$
$$or,\;\; x\sum_{-\infty}^\infty t^nJ_n(x)+x\sum_{-\infty}^\infty t^{n-2} J_n(x) = 2\sum_{n=-\infty}^\infty nt^{n-1}J_n(x)$$
Now, collecting the coefficient of \(t^n\) on both side, we get
$$ xJ_n(x) + xJ_{n+2}(x)= 2(n+1) J_{n+1} (x)$$
This is the first recurrence relation.
Again, differentiating equation (1) with respect to 'x' we get,
$$ e^{\frac12 x(t-1/t)}\cdot \frac12 (t-\frac1t)=\sum_{n=-\infty}^\infty t^n J_n'(x)$$
$$or,\;\; \sum_{n=--\infty} ^\infty t^n J_n(x)\cdot (t-\frac1t) = 2 \sum_{n=-\infty}^\infty t^n J_n'(x)$$
$$or,\;\; \sum_{n=-\infty}^\infty t^{n+1} J_n(x)-\sum_{n=-\infty}^\infty t^{n-1}J_n(x)=2\sum_{n=-\infty}^\infty t^n J_n'(x)$$
Collecting the coefficient of \(t^n\) on both side
$$J_{n-1} (x)= J_{n+1} (x)= 2J_n'(x)$$
This is second recurrence relation.
Proof:
$$\frac{d}{dx}(x^n J_n(x))= x^n J_{n-1}(x)$$
We know,
$$ J_n(x)=\sum_{j=0}^\infty\frac{(-1)^j (x/2)^{n+2j}}{j! (n+j)!}$$
$$=\sum_{j=0}^\infty \frac{(-1)^j x^{n+2j}}{2^{n+2j} j! (n+j)!}$$
Multiplying both side by \(x^n\) we get,
$$ x^n J_n(x)= \sum_{j=0}^\infty \frac{(-1)^j x^{2n+2j}}{2^{n+2j}j!(n+j)!}$$
Differentiating both side with respect to x, we get,
$$or, \frac{d}{dx}(x^n J_n(x))= \sum_{j=0}^\infty \frac{(-1)^j (2n+2)x^{2n+2j-1}}{2^{2n+2j}j! (n+j)(n+j-1)!}$$
$$=\sum_{j=0}^\infty \frac{(-1)^j 2x^{n+2j-1} x^n}{2^{n+2j}j! (n+j-1)!}$$
$$= x^n \sum_{j=0}^\infty \frac{(-1)^j (x/2)^{n+2j-1}}{j!(n-1+j)!}$$
$$\frac{d}{dx}(x^nJ_n(x))= x^nJ_{n-1}(x)$$
Hence proved.
Prove
$$J_1(x)= -J_0'(x)$$
We know the recurrence relation of Bessel is
$$2J_n'(x)= J_{n-1}(x)-J_{n+1}(x)$$
Put n=0
$$ 2J_0'(x)= J_{-1}(x)- J_1(x)$$
$$= -J_1(x) – J_1(x)$$
$$2J_0'(x)= -2J_1(x)$$
$$\therefore\;\;J_1(x)=-J_0'(x)$$ proved.
We know, $$2J_0'(x)= -2J_1(x)$$
Differentiating both side with respect to 'x' we get,
$$2J_0''(x)=-2J_1(x)$$
$$2J_0''(x)= J_0(x)-J_2(x)$$
$$2J_0''(x)= J_2(x)- J_0(x)$$
Reference:
- Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
- Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
- Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
- Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
- Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.
Lesson
Differential equations
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.