Generating function and Rodrigue's formula of Hermite polynomial
We discussed about Generating function and Rodrigue's formula of Hermite polynomial in this topic. Differential equation occurs in various branch of physics, among them Hermite differential equation occur while solving quantum harmonic oscillator in quantum physics. It helps to find energy value and various kind of wave function. The form of Hermite differential equation $$y''-2xy'+2ny=0\dotsm(1)$$
Summary
We discussed about Generating function and Rodrigue's formula of Hermite polynomial in this topic. Differential equation occurs in various branch of physics, among them Hermite differential equation occur while solving quantum harmonic oscillator in quantum physics. It helps to find energy value and various kind of wave function. The form of Hermite differential equation $$y''-2xy'+2ny=0\dotsm(1)$$
Things to Remember
Important equation to be remember
- $$e^{2xt-t^2}=\sum_{n=0}^\infty\frac{H_n(x) +n}{n!}$$
- $$e^{2xt-t^2}=\sum_{n=0}^\infty \frac{H_n(x)+n}{n!}$$
- $$2x. H_n(x) – 2nH_{n-1}(x)=H_{n+1}(x)$$ This is the first recurrence relation.
-
$$H_n'(x)= 2n H_{n-1}(x)\dotsm(A)$$
This is second recurrence relation.
- $$H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}(e-x)^2$$
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Generating function and Rodrigue's formula of Hermite polynomial
Generating function of Hermite polynomial:
$$e^{2xt-t^2}=\sum_{n=0}^\infty\frac{H_n(x) +n}{n!}$$
L.H.S
$$ e^{2xt-t^2}$$
$$=e^{2xt}\cdot e^{-t^2}$$
$$=\biggl[1+\frac{(2xt)^1}{1!}+\frac{(2xt)^2}{2!}+\dotsm+\frac{(2xt)^r}{r!}+\dotsm\biggr]\biggl[1+\frac{(-t^2)^1}{1!}+\frac{(-t^2)^2}{2!}+\dotsm+\frac{(-t^2)^5}{5!}+\dotsm\biggr]$$
$$=\sum_{r=0}^\infty \frac{(2xt)^4}{r!}\cdot \sum_{s=0}^\infty \frac{(-t^2)^s}{s!}$$
$$=\sum_{r=0}^\infty\sum_{s=0}^\infty \frac{(-1)^s(2x)^r t^{r+2s}}{r!s!}$$
Put \( r+ 2s= n, r=n-2s\)
$$=\sum_{n=0}^\infty\sum_{s=0}^{\frac n2} \frac{(-1)^s(2x)^{n-2s}+n}{(n-2s)! s!}$$
$$=\sum_{n=0}^\infty\biggl[\sum_{s=0}^{\frac n2} \frac{(-1)^s (2x)^{n-2s}+n}{(n-2s)! s!}$$
$$=\sum_{n=0}^\infty H_n(x) \times \frac {t^n}{n!}$$
$$=\sum_{n=0}^\infty \frac{H_n(x) t_n}{n!}$$
$$=R.H.S$$
Proved.
Again, We have generating function as,
$$e^{2xt-t^2}=\sum_{n=0}^\infty \frac{H_n(x)+n}{n!}$$
Differentiating above equation with respect to t we get,
$$ e^{2xt-t^2}=\sum_{n=0}^\infty \frac{H_n'(x)+n}{n!}$$
$$or,\;\; \sum_{n=0}^\infty \frac{H_n(x) t^n}{n!}(2x-2t)=\sum_{n=0}^\infty \frac{nt^{n-1}H_n(x)}{n!}$$
$$or,\;\; 2x\sum_{n=0}^\infty \frac{H_n(x)t^n}{n!}- 2\sum_{n=0}^\infty \frac{H_n(x) t^{n+1}}{n!}=\sum_{n=0}^\infty\frac{t^{n-1}H_n(x)}{(n-1)!}$$
Now, equating the coefficient of \(t^n\) on both side. We get,
$$or,\;\; 2x\cdot\frac{H_n(x)}{n!}- 2\cdot \frac{H_{n-1}(x)}{(n-1}!=\frac{H_{n+1}(x)}{n!}$$
$$or,\;\; 2x \frac{H_n(x)}{n(n-1)!}-\frac{2 H_{n-1}(x)}{(n-1)!}=\frac{H_{n+1}(x)}{n(n-1)!}$$
$$or,\;\; 2x. H_n(x) – 2nH_{n-1}(x)=H_{n+1}(x)$$
This is the first recurrence relation.
Now, differentiating equation (1) with respect to x, we get,
$$e^{2xt-t^2}\cdot 2t=\sum_{n=0}^\infty \frac{H_n'(x) t^n}{n!}$$
$$ or,\;\; 2t\cdot \sum_{n=0}^\infty \frac{H_n(x)\cdot t^n}{n!}=\sum_{n=0}^\infty\frac{H_n'(x)\cdot t^n}{n!}$$
Now, collecting the coefficient of \(t^n\) on both side.
$$\frac{2\cdot H_{n-1}(x)}{(n-1)!}=\frac{H_n'(x)}{n!}$$
$$or,\;\; \frac{2\cdot H_{n-1}(x)}{(n-1)!}=\frac{H_n'(x)}{n(n-1)!}$$
$$H_n'(x)= 2n H_{n-1}(x)\dotsm(A)$$
This is second recurrence relation.
Differentiating equation (A) with respect to x, we get
$$H_n''(x)=2nH_{n-1}'(x)$$
$$=2n\cdot 2(n-1) H_{n-2}(x)$$
$$= 2^2 n(n-1) H_{n-2}(x)\dotsm(B)$$
Again, Differentiating equation (B) with respect to x, we get
$$H_n'''(x)= 2^2 n(n-1) H_{n-2}'(x)$$
$$=2^2n(n-1)\cdot 2(n-2) H_{n-3}(x)$$
$$=2^3 n(n-1)(n-2)H_{n-3} (x)$$
Now for m times,
$$\frac{d^mH_n(x)}{dx^m}=2^m n(n-1) (n-2)\dotsm (n-m+1)H_{n-m(x)}\times \frac{(n-m)(n-m-1)\dotsm 3.2.1}{(n-m)(n-m-1)\dotsm 3.2.1}$$
$$\frac{d^mH_n(x)}{dx^m}=\frac{2^mn!H_{n-m}(x)}{(n-m)!}$$
Rodrigue's Formula:
$$H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}(e-x)^2$$
Proof:
We know the generating function of Hermit polynomial is,
$$\sum_{n=0}^\infty \frac{H_n(x)t^n}{n!}= e^{2xt-t^2}\dotsm(1)$$
Now, differentiating equation(1) with respect to 't' for n times and take limit \(t\to0\).
$$\lim\limits_{t\to 0}\frac{d^n}{dt^n}\sum_{n=0}^\infty\frac{H_n(x) t^n}{n!}=\lim\limits_{t\to0}\frac{d^n}{dt^n} e^{2xt-t^2}$$
$$or,\;\; 0+\frac{n! H_n(x)}{n!}+0=\lim\limits_{t\to0} \frac{d^n}{dt^n}e^{x^2-(t-x)^2}$$
$$or,\;\; H_n(x)= e^{x^2} \lim\limits_{t\to0}\frac{d^n}{dt^n}e^{-(t-x)^2}$$
Put t – x = p
When \(t\to 0, p\to –x\)
$$=e^{x^2} \lim\limits_{p\to –x}\frac{d^n}{dp^n} e^{-p^2}$$
$$or,\;\; e^{x^2}\cdot\frac{d^n e^{-x^2}}{d(-x)^n}=e^{x^2} \frac{d^n}{(-1)^n d(x)^n}e^{-x^2}$$
$$=(-1)^n e^{x^2}\frac{d^n}{d(x)^n}e^{-x^2}$$
Hermite polynomial:
$$ H_n(-x)= (+1)^n e^{x^2}\frac{d^n}{d(x)^n}e^{-x^2}$$
Put n=0,
$$ H_0(x)=(-1)^0\cdot e^{x^2}\cdot e^{x^2}\cdot e^{-x^2}=1$$
Put n=1,
$$H_1(x) = (-1)! e^{x^2} \frac{d}{dx} (e^{-x^2})$$
$$= -e^{x^2}[e^{-x^2}\times (-2x)]$$
$$= 2x$$
Put n=2,
$$H_2(x)=(-1)^2 e^{x^2} \frac{d^2}{dx^2}(e^{-x^2})$$
$$= ex^2\frac{d}{dx}[-2x e^{-x^2}]$$
$$=-2 e^{x^2}\cdot [ 1\cdot e^{-x^2} + xe^{-x^2}\times(-2x)]$$
$$= -2+4x^2$$
$$= 4x^2-2$$
Reference:
- Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
- Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
- Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
- Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
- Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.
Lesson
Differential equations
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.