First four Lagueree polynomial, Orthogonality of Lagueree polynomial

First four Lagueree polynomial and Orthogonality of Lagueree polynomial were discussed in this chapter.While solving quantum theory of rigid rotator we encounter with a special kind of differential equation which has a form of $$ x\frac{d^2}{dx^2}+(1-x)\frac{dy}{dx}+ny=0$$ called Laguerre's differential equation.

Summary

First four Lagueree polynomial and Orthogonality of Lagueree polynomial were discussed in this chapter.While solving quantum theory of rigid rotator we encounter with a special kind of differential equation which has a form of $$ x\frac{d^2}{dx^2}+(1-x)\frac{dy}{dx}+ny=0$$ called Laguerre's differential equation.

Things to Remember

Important equation to be remember:

  • The Rodrigue's formula for Lagueree polyomial is,

    $$ L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n} (x^n e^{-x})$$

  • The form of Laguree differential equation as,

    $$x\frac{d^2y}{dx^2}+ (1-x) \frac{dy}{dx}+ny=0$$

  • $$=\frac{e^x}{2!} 2e^{-x} (1-x-x+x^2)$$
  • $$\int_0^\infty e^{-x} L_n(x) L_m(x) dx= \delta _{mn}$$

    Where \(\delta_{mn}\)= 1 for n=m

    \(\delta_{mn}\)= 0 for n\(\ne\) m

    this is the orthogonality relation for lagurre polynomial.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

First four Lagueree polynomial, Orthogonality of Lagueree polynomial

First four Lagueree polynomial, Orthogonality of Lagueree polynomial

First four Lagueree polynomial:

We know, the Rodrigue's formula for Lagueree polyomial is,

$$ L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n} (x^n e^{-x})$$

For first four polynomial put n=0,1,2,3

Then,

For n=0, \(L_0(x)=\frac{e^x}{0!} \frac{d^0}{dx^0} (x^0 e^{-x})\)

$$ =e^x(e^{-x})$$

$$=1$$

Put n=1,

$$L_1(x)=\frac{e^x}{1!} \frac{d}{dx} (x^1 e^{-x})$$

$$=e^x{1.e^{-x} + xe^{-x} (-1)}$$

$$= e^x[e^{-x}- xe^{-x}(-1)]$$

$$=e^x[e^{-x} - xe^{-x}]$$

$$=e^x\cdot e^{-x}[1-x]$$

$$=[1-x]$$

Put n=2

$$l_2(x)= \frac{e^x}{n!} \frac{d^2}{dx^2}[x^2 e^{-x}]$$

$$=\frac{e^x}{2!} \frac{d}{dx}[ 2xe^{-x}+ x^2(-1) e^{-x}]$$

$$=\frac{e^x}{2!} \frac{d}{dx}[2xe^{-x} - x^2 e^{-x}]$$

$$=\frac{e^x}{2!} [ 2e^{-x} + (-1) e^{-x} 2x- ( 2x.e^{-x} + (-1)e^{-x} x^2)]$$

$$=\frac{e^x}{2!} [ 2e^{-x} -- 2xe^{-x}- 2xe^{-x} + e^{-x} x^2]$$

$$=\frac{e^x}{2!} 2e^{-x} (1-x-x+x^2)$$

Orthogonality of Lagueree polynomial:

The form of Laguree differential equation as,

$$x\frac{d^2y}{dx^2}+ (1-x) \frac{dy}{dx}+ny=0$$

$$or,\;\; \frac{d^2y}{dx^2}+\frac{(1-x)}{x}\frac{dy}{dx}+\frac nx y=0$$

Since, \(y=L_n(x)\)

$$or, \frac{d^2L_n(x)}{dx^2} + \frac{(1-x)}{x}\cdot \frac{dL_n(x)}{dx}+\frac{n}{x} L_n(x)=0$$

Now, multiplying both sides by \(xe^{-x}\) on above equation as I.F we get,

$$ \frac{d}{dx}\biggl(xe^{-x} d\frac{dL_n(x)}{dx}\biggr) + ne^{-x} L_n(x)=0\dotsm(a)$$

For \(m^th\) order, we can write

$$ \frac{d}{dx} \biggl( xe^{-x} \frac{dL_m(x)}{d(x)}+ me^{-x} L_m(x)=0\dotsm(b)$$

Multiplying equation (a) by \(L_n(x)\) and subtracting we get,

$$or\;\;, L_m(x)\frac{d}{dx} \biggl(xe^{-x} d\frac{d_n(x)}{dx}\biggr)- l_n(x) \frac{d}{dx}\biggl( xe^{-x} \frac{dL_m(x)}{dx}\biggr)+e^{-x}(n-m) L_n(x) L_m(x)=0$$

$$or\;\; \frac{d}{dx} \biggl[ L_m(x) xe^{-x} \frac{dL_n(x)}{dx}- L_n(x) xe^{-x} \frac{dL_m(x)}{dx}\biggr]+ (n-m) e^{-x} L_n(x) L_m(x)=0$$

Integrating both side with respect to x from 0 to \(\infty\), we get

$$or\;\; \int_0^\infty \frac{d}{dx}\biggl[L_m(x) e^{-x} \frac{dL_n(x)}{dx}-L_n(x)\cdot xe^{-x} \frac{dL_m(x)}{dx}\biggr] dx+ (n-m) \int_0^\infty e^{-x} L_n(x) L_m(x) dx=0$$

$$or\;\;, \biggl| L_m(x)\cdot xe^{-x} \frac{dL_n(x)}{dx}- L_n(x)\cdot xe^{-x} \frac{dL_m(x)}{dx}\biggr|_0^\infty+ (n-m)\int_0^\infty e^{-x} L_n(x) L_m(x) dx=0$$

$$or\;\;, (n-m)\int_0^\infty e^{-x} L_n(x) L_m(x) dx=0\dot(d)$$

Case I:

For n\(\ne\)m

\(\int_0^\infty e^{-x} L_n(x) L_m(x) dx=0\dotsm(e)\)

Case II:

for n=m

\(\int_0^\infty e^{-x} L_n(x) L_m(x) dx\ne 0\)

We know the generating function of Laguree polynomial is:

$$\int_0^\infty t^n L_n(x)= \frac{1}{1-t} e^{\frac{-xt}{1-t}}$$

Squaring on both side, we get

$$\sum_0^\infty t^{2n} L_n(x) L_n(x) = \frac{1}{(1-t)^2} e^{\frac{-2xt}{1-t}}$$

When multiplying with \(e^{-x}\) and integrating from 0 to \(\infty\) cross term would be zero due to equation (d).

Multiplying both sides by \(e^{-x}\) , we get

$$or\;, \sum_{n=0}^\infty t^{2n} e^{-x} L_n(x) L_n(x) =\frac{1}{(1-t)^2} e^{-2x}\cdot e^{-2xt}{1-t}$$

$$or\;\; \sum_{n=0}^\infty t^{2n} e^{-x} L_n(x) L_n(x) = \frac{1}{(1-t)^2} e^{-x(\frac{1+t}{1-t})}$$

$$or\;\; \sum_{n=0}^\infty t^{2n} e^{-x} L_n(x) L_n(x) = \frac{1}{(1-t)^2} e^{-x(\frac{1+t}{1-t})}$$

Integrating both sides, we get,

$$\sum_{n=0}^\infty t^{2n} \int_0^\infty e^{-x} L_n(x) L_n(x) dx= \frac{1}{(1-t)^2} \int_0^\infty e^{{-x}(\frac{1+t}{1-t}) }dx$$

$$= \frac{1}{(1-t)^2}\frac{e^{-x(\frac{1+t}{1-t})}}{-(\frac{1+t}{1-t})}\biggr|_0^\infty$$

$$=\frac{1}({1-t)^2}\biggl[\frac{0-1}{-(\frac{1+t}{1-t})}\biggr]$$

$$=\frac{1}{(1-t)(1+t)}$$

$$=\frac{1}{t^2}$$

$$=(1-t^2)^{-1}$$

$$=1+\frac{1t^2}{1!}+\frac{1.2 (t^2)^2}{2!}+\frac{1.2.3}{3!}(t^2)^3+\dotsm+ (t^2)^n$$

$$=1+t^2+t^4+\dot t^{2n}$$

Collecting the coefficient of \(t^{2n}\) on both sides, we get,

$$\int_0^\infty e^{-x} L_n(x) L_n(x) dx=1\dot(1)$$

Now, combining (1) and (f), we get

$$\int_0^\infty e^{-x} L_n(x) L_m(x) dx= \delta _{mn}$$

Where \(\delta_{mn}\)= 1 for n=m

\(\delta_{mn}\)= 0 for n\(\ne\) m

this is the orthogonality relation for lagurre polynomial.

Reference:

  1. Dass, H. K.Mathematical Physics. New Delhi: S. Chand, 2005.
  2. Vaughn, Michael T.Introduction to Mathematical Physics. Weinheim: Wiley-VCH, 2007
  3. Butkov, Eugene.Mathematical Physics. Reading, MA: Addison-Wesley Pub., 1968.
  4. Carroll, Robert W.Mathematical Physics. Amsterdam: North-Holland, 1988.
  5. Adhikari, Pitri Bhakta, and Dya Nidhi Chhatkuli.A Textbook of Physics. Third Revised Edition ed. Vol. III. Kathmandu: SUKUNDA PUSTAK BHAWAN, 2072.

Lesson

Differential equations

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.