Electromagnetic Wave Equation and Waves in Free Space by using Maxwell’s equations
Maxwell’s equations are applicable to find a wave equation for electromagnetic waves can be derived by using them.This note provides us an information on electromagnetic wave equation and waves in free space by using Maxwell’s equations.
Summary
Maxwell’s equations are applicable to find a wave equation for electromagnetic waves can be derived by using them.This note provides us an information on electromagnetic wave equation and waves in free space by using Maxwell’s equations.
Things to Remember
∇2→E−μσ∂→E∂t−με∂2→E∂t2=0Similarly∇2→H−μσ∂→H∂t−με∂2→H∂t2=0
Above equations represent the wave equations govern the electromagnetic field in isotropic medium where charge density is zero.
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Electromagnetic Wave Equation and Waves in Free Space by using Maxwell’s equations
Electromagnetic Wave Equation by using Maxwell’s Equations
Maxwell’s equations are applicable to find a wave equation for electromagnetic waves can be derived by using them. Let us assume an isotropic medium having permittivity, ε, permeability μ and conductivity σ but free from any other charge and current other than determined by Ohm’s law. The properties of the medium has been summarized as
→D=ε→E→B=μ→H→J=σ→Eρ=0)…(1)
The Maxwell’s equations are,
∇.→D=ρ∇.→B=0∇×→E=−∂→B∂t∇×→H=→j+∂→D∂t)…(2)
The Maxwell’s equations can be re-written using parameters of medium as explained in equation (1)
∇.→D=ρ∇.→B=0∇×→E=−∂→B∂t=−μ∂→H∂t∇×→H=→j+∂→D∂t=σ→E+∂→E∂t)…(3)
Using 3rd Maxwell’s equation, it can be written as
→∇×(→∇ ×→E)=→∇×(−μ∂→H∂t)=μ∂∂t(→∇×H)=−μ∂∂t(σ→E+ε∂→E∂t)=−μσ∂→E∂t−με∂2→E∂t2
→∇×(→∇×→H)=→∇×(σ→E+ε∂→E∂t)=σ(→∇×→E)+ε∂∂t(→∇×→E)
or,→∇×(→∇×→H)=σ(−μ∂→H∂t)+ε∂∂t(−μ∂→H∂t)=−μσ∂→H∂t−με∂2→H∂t2…(5)
One of the usual vector identities is
→∇×(→∇×→A)=→∇(→∇.→A)−(→∇.→∇)→A=→∇(→∇.→A)−→∇.2→ASimilary,→∇×(→∇×→E)=→∇(→∇.→E)−→∇.2→E=0−∇2.→E(∵For linear medium→∇.→E=0)=−∇2.→E
→∇×(→∇×→H)=→∇(→∇.→H∇.2→H=0−→∇.2→H(∵→∇.→H=0)=∇2→H
Equations (3) and (4) becomes
∇2→E=−μσ∂→E∂t−με∂2→E∂t2∇2→E−μσ∂→E∂t−με∂2→E∂t2=0…(6)Similarly∇2→H−μσ∂→H∂t−με∂2→H∂t2=0…(7)
Equation (6) and (7) represent the wave equations govern the electromagnetic field in isotropic medium where charge density is zero.
Plane Electromagnetic Waves in Free Space
The Maxwell’s equations are
∇.→D=ρ∇.→B=0∇×→E=−∂→B∂t∇×→H=→J+∂→D∂t→B=μ→H,→D=ε→E,→J=σ→E)…(1)
In free space,ρ=0σ=0μ=μ0ε=ε0)…(2)
On substituting these values , Maxwell’s equation become
∇.→E=0∇.→H=0∇×→E=−μ0∂→H∂t∇×→H=ε0∂→E∂t)…(3)
Similary→∇×(→∇×E)=→∇(∇.→E)−∇2→E…(4)→∇×(→∇×E)=0−μ0∂∂(→nabla×→H)=−μ0ε0∂2→E∂t2using equation(1)…(5)
From equations(4)and(5)∇2→E−μ0ε0∂2→E∂t2=0…(6)(∵→∇×(→∇×E=∇2→E)∇2→H−μ0ε0∂2→H∂t2=0…(7)
These equations (6) and (7) represent wave equations governing electromagnetic fields →E and →H free space. On combination,
From equations(6)and(7)∇2→A−μ0ε0∂2→A∂t2=0
General wave equation
∇2→A−1v2∂2→A∂t2=0
where v is velocity of wave.
v2=1μ0ε0∴v=1√μ0ε0…(8)
Equation (8) conforms that light is electromagnetic wave.
Relation between →K,→Eand→H Vectors
A plane wave is defined as a wave whose amplitude is the same at any point in a plane perpendicular to a specified direction. The plane solutions of above equations in well known form may be written as
→E(r,t)=E0ei(→k.→r−ωt)…(8)→H(r,t)=H0ei(→k.→r−ωt)…(9)→A(r,t)=A0ei(→k.→r−ωt)…(10)
From this, we can write
→∇.→E=(ˆi∂∂x+ˆj∂∂y+ˆk∂∂z).E0ei(→K.→r−ωt)=(ˆi∂∂x+ˆj∂∂y+ˆk∂∂z)(ˆiEox+ˆjEoy+ˆzEoz)ei(kxx+Kyy+kzz−ωt)=i.→K.→E0ei(→K.→r−ωt)=i→K.→ESimilarly(→∇×→E)=i→K.→H
Thus the requirements →∇.→E=0 and →K.→H=0
i→k.→E=0andi→k.→H=0
This shows that electromagnetic field vectors →E and (\vec H\) are perpendicular to the direction of propagation vector →k. This implies that electromagnetic waves are transverse in character. i→K×→E=−μ0(−iω→H)→→K×→E=μ0iω→Hi→k×→E=ε0.(−iω→E)→→K×→H=−ε0ω→E
We know
→∇×→E=−μ0∂→H∂t∇≈ik→∇×→H=ε0∂→E∂t∂∂t≈−iω
→∇×→E=−μ0∂→H∂tand→∇×→H=ε0∂→E∂ti→k×→E=−μ0(−iω→H)i→k×→H=ε0(−iω→E)→k×→E=μ0ω→H→k×→H=−ε0ω→E
These two equations shows that →E,→H,→K are perpendicular vectors.
Bibliography
P.B. Adhikari, Bhoj Raj Gautam, Lekha Nath Adhikari. A Textbook of Physics. kathmandu: Sukunda Pustak Bhawan, 2011.
Jha, V. K.; 'Lecture title'; Maxwell's Equation; St. Xavier's College, Kathmandu; 2016.
Lesson
Maxwell's Electromagnetic Equations
Subject
Physics
Grade
Bachelor of Science
Recent Notes
No recent notes.
Related Notes
No related notes.