Orthogonal Curvilinear Coordinates

If the coordinate surfaces intersect at right angles, the curvilinear coordinate system is called orthogonal. This note provides us an information on orthogonal curvillinear system.

Summary

If the coordinate surfaces intersect at right angles, the curvilinear coordinate system is called orthogonal. This note provides us an information on orthogonal curvillinear system.

Things to Remember

If the coordinate surfaces intersect at right angles, the curvilinear coordinate system is called orthogonal. 

\begin{align*}\text {div}\: \vec A &= \nabla . \vec A \\ &= \frac {1}{h_1h_2h_3}\left [ \frac {\partial (A_1h_2h_3)}{\partial u_1}+ \frac {\partial (A_2h_3h_1)}{\partial u_2}+ \frac {\partial (A_3h_1h_2)}{\partial u_3}\right ] \end{align*}

\begin{align*}\vec {\nabla}.\vec A = \text {curl}\: \vec A = \frac {1}{h_1h_2h_3} \left |\begin{matrix}h_1\hat {e_1} &h_2 \hat {e_2} &h_3\hat {e_3} \\ \frac {\partial}{\partial u_1} &\frac {\partial }{\partial u_2} &\frac {\partial }{\partial u_3} \\ h_1A_1 &h_2A_2 &h_3A_3\end{matrix}\right | \end{align*}

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Orthogonal Curvilinear Coordinates

Orthogonal Curvilinear Coordinates

Let us consider rectangular coordinates \((x,\: y,\: z)\) of any point expressed as function of \((u_1,\: u_2,\: u_3)\) so that

$$\left.\begin{align*} X &= x(u_1,\: u_3,\:u_3)\\ Y &= y(u_1,\: u_3,\:u_3) \\ Z &= z(u_1,\: u_3,\:u_3) \end{align*} \right )\dots (1) $$

On simplification

$$\left.\begin{align*} u_1 &= u_1(x,\: y,\:z)\\ u_2 &= u_2(x,\: y,\:z) \\ u_3 &= u_3(x,\: y,\:z) \end{align*} \right )\dots (2) $$

Here equation (2) associates a unique set of coordinates \(u_1,\: u_2,\: u_3)\) of a given point p with rectangular coordinates \(x,\: y,\: z)\) called curvilinear coordinates of p. let the surfaces \(u_1 = c_1,\:u_2 = c_2,\: u_3 =c_3\) where \(c_1,\: c_2,\: c_3\) are constants, called coordinates surfaces. If the coordinate surfaces intersect at right angles, the curvilinear coordinate system is called orthogonal. Then u1, u2 and u3 coordinate curves of a curvilinear system are analogous to the x, y and z coordinate axes of a rectangular system.

general curvilinear coordinate system
Curvilinear coordinate

Let \(\vec r = x\hat i+ y\hat j + z\hat k \) be position vector of point P. then the tangent vector to the curve u1 at P while u2 and u3 are constants, is \(\frac {\partial \vec r}{\partial u_1}\) then unit tangent vector along this direction is

\begin{align*} \hat {e_1} &= \frac {\frac {\partial \vec r}{\partial u_1}}{\left |\frac {\partial \vec r}{\partial u_1}\right |} \\ \text {or,}\:h_1\hat {e_1} &=\frac {\partial \vec r}{\partial u_1}\: \text {where}\: h_1 = \left |\frac {\partial \vec r}{\partial u_1}\right | \\ \text {Similarly,}\: \hat {e_2} &= \frac {\frac {\partial \vec r}{\partial u_2}}{\left |\frac {\partial \vec r}{\partial u_2}\right |}\\ \text {or,}\:h_2\hat {e_2} &=\frac {\partial \vec r}{\partial u_2}\: \text {where}\: h_2 = \left |\frac {\partial \vec r}{\partial u_2}\right | \end{align*}

\begin{align*}\text {or,}\:h_3\hat {e_3} &=\frac {\partial \vec r}{\partial u_3}\: \text {where}\: h_2 = \left |\frac {\partial \vec r}{\partial u_3}\right | \end{align*}

When quantities h1, h2, h3 are scalars and are called scale factors.

Again \(\vec r = \vec r (u_1,\: u_2, \: u_3)\)

\begin{align*}d\vec r &= \frac {\partial \vec r}{\partial u_1}du_1 + \frac {\partial \vec r}{\partial u_2}du_2+ \frac {\partial \vec r}{\partial u_3}du_3 \\ &= h_1\: du_1\:\hat {e_1} + h_2\: du_2\: \hat {e_2} + h_3\: du_3\:\hat {e_3} \end{align*}

Now, the differential of arc length ds is determined from

General curvilinear coordinate system
General curvilinear coordinate system

$$ds^2 = d\vec r.d\vec r $$

But for orthogonal systems,

\begin{align*}\hat {e_1}.\hat {e_2} &= \hat {e_2}.\hat {e_3} = \hat {e_3}.\hat {e_1} \\ \therefore ds^2 &= h_1^2du_1^2 +h_2^2du_2^2 + h_3^2du_3^2\end{align*}

Which is arc length.

Now, the volume element for orthogonal curvilinear coordinates system is given by

\begin{align*} dv &=|( h_1\: du_1\:\hat {e_1}).( h_2\: du_2\: \hat {e_2} )\times (h_3\: du_3\:\hat {e_3} )| \\ dv &= h_1\: h_2\: h_3\: du_1\: du_2\: du_3\:\:\:[\because\hat {e_1}.\hat {e_2}\times \hat {e_3} = 1]\end{align*}

Now Gradient, Divergence and Curl in terms of orthogonal curvilinear coordinates

$$\text {Grad}\: \phi = \nabla \phi = \frac {1}{h_1} \frac {\partial \phi }{\partial u_1} \hat {e_1}+ \frac {1}{h_2} \frac {\partial \phi }{\partial u_2} \hat {e_2}+ \frac {1}{h_3} \frac {\partial \phi }{\partial u_3} \hat {e_3} $$

Where \(\phi = \phi (u_1,\: u_2,\:u_3)\) be any scalar.

\( \hat {e_1},\: \hat {e_2},\: \hat {e_3}\) be the unit vector along u1, u2, and u3 respectively.

Divergence

\begin{align*} \text {Let}\: \vec A &= A_1\hat {e_1} + A_2\hat {e_2} + A_3 \hat {e_3} \\ \text {div}\: \vec A &= \nabla . \vec A \\ &= \frac {1}{h_1h_2h_3}\left [ \frac {\partial (A_1h_2h_3)}{\partial u_1}+ \frac {\partial (A_2h_3h_1)}{\partial u_2}+ \frac {\partial (A_3h_1h_2)}{\partial u_3}\right ] \end{align*}

Curl

\begin{align*}\vec {\nabla}.\vec A = \text {curl}\: \vec A = \frac {1}{h_1h_2h_3} \left |\begin{matrix}h_1\hat {e_1} &h_2 \hat {e_2} &h_3\hat {e_3} \\ \frac {\partial}{\partial u_1} &\frac {\partial }{\partial u_2} &\frac {\partial }{\partial u_3} \\ h_1A_1 &h_2A_2 &h_3A_3\end{matrix}\right | \end{align*}

\begin{align*} \delta ^2\phi = \text {laplacian of }\: \phi \\ \frac {1}{h_1h_2h_3} \left [ \frac {\partial }{\partial u_1}\left (\frac {h_2h_3 }{h_1}\frac {\partial \phi }{\partial u_1} \right )+ \frac {\partial }{\partial u_2}\left (\frac {h_3h_1 }{h_2}\frac {\partial \phi }{\partial u_2} \right )+ \frac {\partial }{\partial u_3}\left (\frac {h_1h_2 }{h_3}\frac {\partial \phi }{\partial u_3} \right )\right ]\end{align*}

We can reduce above expression in to the usual expression by replacing \((u_1,\:u_2,\: u_3)\) is replaced by \((x,\: y,\: z)\) and \((\hat {e_1} + \hat {e_2} + \hat {e_3})\) by \(x,\: y,\: z)\).in usual expression h1 = h2 = h3 = 1.

Bibliography

P.B. Adhikari, Bhoj Raj Gautam, Lekha Nath Adhikari. A Textbook of Physics. kathmandu: Sukunda Pustak Bhawan, 2011.

Jha, V. K.; 'Lecture title'; Elementary Vector Analysis; St. Xavier's College, Kathmandu; 2016.

Lesson

Elementary Vector Analysis

Subject

Physics

Grade

Bachelor of Science

Recent Notes

No recent notes.

Related Notes

No related notes.