Our National Heritages

All the cultural features and resources which are created, protected and promoted by our ancestor and handed to future generations are called heritages. This note provides us the information about heritages of Nepal.

Summary

All the cultural features and resources which are created, protected and promoted by our ancestor and handed to future generations are called heritages. This note provides us the information about heritages of Nepal.

Things to Remember

  • Nepal is a country gifted by god. 
  • The National Museums, National Parks, Durbar Squares are the places which come under national wealth. 
  • All the cultural features and resources which are created, protected and promoted by our ancestor and handed to future generations are called heritages.
  • The UNESCO has listed several sites of Nepal in the World Heritage Site. They are Pashupatinath Temple, Hanumandhoka Durbar Square, Patan Durbar Square, Bhaktapur Durbar Square, Changunarayan temple, Lumbini, Boudhanath Temple, Swayambhunath Temple, Chitwan National Park and Sagarmatha National Park.

MCQs

No MCQs found.

Subjective Questions

Q1:

If f= {(1,3), (0,0), (-1,-3) and g= {(2,3), (-3,-1), (3,5)} show the function gof by an arrow diagram and find it in ordered pair form.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f= {(1,3), (0,0), (-1,-3)}, g= {(0,2), (-3,-1), (3,5)}, the above relation shown in the mapping diagram as follow:</p> <figure class="" style="width: 500px;"><img src="/uploads/a113.jpg" alt="sx" width="500" height="300"><figcaption><br></figcaption></figure><p>g<sub>o</sub>f= g(3) = 5</p> <p>g<sub>o</sub>f = g(0) =2</p> <p>g<sub>o</sub>f= g(-3) = -1</p> <p>g<sub>o</sub>f = g {(0,2), (-1,-1), (1,5)} <sub>Ans</sub></p> <p></p>

Q2:

If f = {(-2,4), (-1,8), (0,0), (1,4), (2,6)} and g = {(0,-2), (4,0), (6,1), (8,-2)}, show the function gof by an arrow diagram and find it ordered pair form.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f = {(-2,4), (-1,8), (0,0), (1,4), (2,6)},</p> <p>g = {(o,-2), (4,0), (6,1), (8,-2)}</p> <p>The mapping diagram is shown below:</p> <figure class="" style="width: 500px;"><img src="/uploads/a25.jpg" alt="sd" width="500" height="300"><figcaption><br></figcaption></figure><p>g<sub>o</sub>f(-2) = g(4) = 0</p> <p>g<sub>o</sub>f(-1) = g(8) = -2</p> <p>g<sub>o</sub>f(0) = g(0) = 0</p> <p>g<sub>o</sub>f(1) = g(4)=0</p> <p>g<sub>o</sub>f(2) = g(6) = 1</p> <p>g<sub>o</sub>f= {(-2,0), (-1,-2), (0,-2) , (1,0), (2,1)} <sub>Ans</sub></p>

Q3:

If f = {(p,1), (q, 2), (r,3), (s,4)} and g = {(1,5), (2,8), (3,-3), (4,6)}, show the function fog by an arrow diagram and find it in ordered pair form. 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f = {(p,1), (q,2), (r,3), (s,4)}, g = {(1,5), (2,8), (3,-3), (4,6)}</p> <p>The mapping diagram is shown below:</p> <figure class="" style="width: 500px;"><img src="/uploads/a35.jpg" alt="dsv" width="500" height="300"><figcaption><br></figcaption></figure><p>f<sub>o</sub>g = {(5,p), (8,q), (-3,r), (6,s)} <sub>Ans</sub></p>

Q4:

If f = {(x,3), (y,4), (z,7)}, g = {(3,a), (4,b), (7,c)}, show the function fog by an arrow diagram and find it in ordered pair form.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f = {(x,3), (y,4), (z,7)}, g = {(3,a), (4,b), (7,c)}</p> <p>The mapping diagram is shown below:</p> <figure class="" style="width: 500px;"><img src="/uploads/a42.jpg" alt="d" width="500" height="300"><figcaption><br></figcaption></figure><p>f<sub>o</sub>g = {(a,x), (b,y), (c,z)} <sub>Ans</sub></p>

Q5:

If f(x) = x and g(x) = xfind the fg(x).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x) = x<sup>3</sup> and g(x) = x<sup>2</sup></p> <p>fg(x)</p> <p>= f(x<sup>2</sup>) [\(\because\) g(x) = x<sup>2</sup>]</p> <p>= (x<sup>2</sup>)<sup>3 </sup>[\(\because\) f(x) = x<sup>3</sup>]</p> <p>= x<sup>6</sup><sub>Ans</sub></p> <p></p>

Q6:

If f(x) = \(\frac 1x\), x ∈ R, x ≠ 0, find the value of ff(2).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x) =\(\frac 1x\)</p> <p>ff(x) = f \(\frac 1x\) [\(\because\) f(x) = \(\frac 1x\)]</p> <p>= \(\cfrac{1}{<br>\cfrac{1}{x}}\) =1&times; \(\frac x1\) = x</p> <p>&there4; ff(2) = 2 <sub>Ans</sub></p>

Q7:

If f(x) = 3x2 + x - 28 and g(x) = 6-x are the two polinomials. Find the value of f(x) ⋅ g(x).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here, f(x) = 3x<sup>2</sup> + x - 28 and g(x) = 6-x</p> <p>f(x)&sdot; g(x)</p> <p>= (3x<sup>2</sup> + x - 28) (6-x)</p> <p>= 18x<sup>2</sup> + 6x - 168 -3x<sup>3</sup>-x<sup>2</sup> + 28x</p> <p>= -3x<sup>3</sup> + 17x<sup>2</sup>+ 34x - 168 <sub>Ans</sub></p>

Q8:

Write down the range and the inverse function of the following functions:

f = {(2, \(\frac 12\)), (3, \(\frac13\)), (4,\(\frac 14\))} 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f = {(2,\( \frac 12\)), (3, \(\frac13\)), (4,\(\frac 14\))}</p> <p>Range = { \(\frac 12\), \(\frac 13\), \(\frac 14\)}</p> <p>Inverse function (f<sup>-1</sup>) = {(\(\frac 12\), 2), (\(\frac 13\), 3), (\(\frac 14\), 4)}<sub>Ans</sub></p>

Q9:

Find the inverse function of the following function:

  1.  {(3,2), (-1,-7), (4,5), (6,8)}
  2. {x, 2x+1 :  x ∈ R}

Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <ol><li type="a">{(3,2), (-1,-7), (4,5), (6,8)}</li> </ol><p>Let f = {(3,2), (-1,-7), (4,5), (6,8)}</p> <p>Changing domain into range and range into domain.</p> <p>f<sup>-1</sup> = {(2,3), (-7,-1), (5,4), (8,6)}</p> <ol><li type="a">{x, 2x+1 : x&isin; R}</li> </ol><p>Let y = f(x) = 2x+1</p> <p>Interchange the place of x and y</p> <p>x = 2y + 1</p> <p>x-1 = 2y</p> <p>2y = x-1</p> <p>y = \(\frac {x-1}{2}\)</p> <p>&there4; f<sup>-1</sup> = \(\frac{x-1}{2}\) <sub>Ans</sub></p>

Q10:

If f(4x-15) = 8x-27 then find ff(2).

 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(4x-15) = 8x-27</p> <p>Or,</p> <p>f(4x-15) = 2(4x-15) + 3</p> <p>&there4; f(x) = 2x+3</p> <p>ff(x) = f(2x+3) = 2 (2x+3) +3 = 4x +6+3 = 4x+9</p> <p>ff(2) = 4 &times; 2 + 9 = 17 <sub>Ans</sub></p>

Q11:

If g(2x-5) = 8x-19 find gg(2).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>g(2x-5) = 8x-19</p> <p>g(2x-5) = 4(2x-5) +1</p> <p>g(x) = 4x+1</p> <p>gg(x) =g(4x+1) = 4(4x+1) +1 = 16x+4+1 = 16x+5</p> <p></p> <p>gg(2) = 16&times;2+5 = 32+5 =37 <sub>Ans</sub></p>

Q12:

If f(x+3) = 3x+5 then find f-1.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x+3) = 3x+5</p> <p>f(x+3) = 3(x+3) -4</p> <p>f(x) = 3x-4</p> <p>Let y = f(x) = 3x-4</p> <p>Y = 3x-4</p> <p>Interchanging the place of x and y in the above relation</p> <p>x = 3y-4</p> <p>Or, 3y = x+4</p> <p>y = \(\frac {x+4}{3}\)</p> <p>f<sup>-1</sup> (x) = \(\frac {x+4}{3}\) <sub>Ans</sub></p>

Q13:

If g(x) = 2x and fog(x) = 6x-2 then find f(x)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>fog(x) = 6x-2</p> <p>Or, f[g(x)] = 6x-2</p> <p>Or, f(2x) = 6x-2</p> <p>Or, f(2&sdot;\( \frac x2\) = 6 \(\frac x2\)-2</p> <p>f(x) = 3x-2 <sub>Ans</sub></p>

Q14:

If f(x) = 8x-3 and fg(x) = 20x+1 find g(x).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let g(x) = ax+b</p> <p>fog(x) = f[g(x)] = f(ax+b) = 8(ax+b) -3</p> <p>fog(x) = 8ax +8b - 3 ------ (1)</p> <p>fog(x) = 20x+1 ------------(2)</p> <p>From eq<sup>n</sup> (1) and (2)</p> <p>8ax +8b -3 = 20x +1</p> <p>Equating on both sides,</p> <p>8a = 20</p> <p>a = \(\frac {20}{8}\)</p> <p>&there4; a = \(\frac 52\)</p> <p>8b -3 = 1</p> <p>8b = 4</p> <p>b =\(\frac 48\) = \(\frac 12\)</p> <p>&there4; b = \(\frac 12\)</p> <p>Putting the value of a and b in g(x) = ax + b</p> <p>g(x) = \(\frac 52\) x + \(\frac 12\) = \(\frac {5x+1}{2}\)<sub>Ans</sub></p>

Q15:

Find the inverse function of {(x, 2x+1) : x ∈R}.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Function f = {(x, 2x+1) : x&isin;R}</p> <p>Let, y = 2x + 1</p> <p>Interchanging the place of x and y</p> <p>x = 2y + 1</p> <p>or, x-1 = 2y</p> <p>or, y = \(\frac {x-1}{2}\)</p> <p>&there4; f<sup>-1</sup>= {(x, \(\frac {x-1}2\)) :x&isin;R } <sub>Ans</sub></p>

Q16:

If f(x) = 2x + 3 and g(x) = 5x2 find fg (x) and gf (x).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x) = 2x + 3, g (x) = 5x<sup>2</sup></p> <p>fg (x)</p> <p>= f (5x<sup>2</sup>) [\(\because\) g(x) = 5x<sup>2</sup>]</p> <p>= 2&times;5x<sup>2</sup>+ 3</p> <p>= 10x<sup>2</sup> +3 <sub>Ans</sub></p> <p>Also,</p> <p>gf(x)</p> <p>= g (2x + 3) [\(\because\) f(x) = 2x + 3 ]</p> <p>= 5 (2x + 3)<sup>2</sup><sub>Ans</sub></p>

Q17:

If f(x) = x2 + 5 and g(x) = x - 3 find fog (2).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>fog (2)</p> <p>= f(2x - 3) [\(\because\) g(x) = x - 3 ]</p> <p>= f(-1)</p> <p>= (-1)<sup>2</sup> + 5 [\(\because\) f(x) = x<sup>2</sup> + 5 ]</p> <p>= 1 + 5</p> <p>= 6 <sub>Ans</sub></p> <p></p>

Q18:

Using synthetic division method. Find the remainder when x3 + 3x2 - 2x + 6 is divided by x - 3.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>x<sup>3</sup> + 3x<sup>2</sup> - 2x + 6&divide; (x - 3)</p> <p></p> <div> <table width="275"><tbody><tr><td>3</td> <td>1</td> <td>3</td> <td>-2</td> <td>6</td> </tr><tr><td></td> <td></td> <td>3</td> <td>18</td> <td>48</td> </tr><tr><td></td> <td>1</td> <td>6</td> <td>16</td> <td>54</td> </tr></tbody></table></div> <p>The remainder (R) = 54 <sub>Ans</sub></p>

Q19:

State and proved the remainder theorem.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>If the polynomial f(x) is divided by x - a, the remainder is f(a)</p> <p>Proof: Let, Q(x) be the quotient and R be the remainder when f(x) is divided by (x - a) then, f(x) = (x -a)&sdot;Q(x) + R.</p> <p>When x = a, f(a) = (a -a)&sdot;Q(x) + R &there4; f(a) = R <sub>proved</sub></p>

Q20:

State and proved the factor theorem.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>If the polynomial f(x) is divided by (x - a) and R = f(a) = 0, then (x - a) is a factor of f(x).</p> <p>Proof: Let Q(x)</p> <p>Let Q(x) be the quotient when f(x) is divided by (x - a), then f(x) = (x-a) Q(x) + R = (x-a) Q(x) + 0</p> <p>f(x) = (x-a) Q(x)</p> <p>&there4;(x-a) is a factor of f(x). <sub>proved</sub></p>

Q21:

Using synthetic division method find the quotient and remainder of the expression x4 - x3 - 3x2 -2x + 5 where x + 1 = 0. 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>x<sup>4</sup> - x<sup>3</sup> - 3x<sup>2</sup> -2x + 5&divide; (x + 1)</p> <table width="328"><tbody><tr><td>-1</td> <td>1</td> <td>-1</td> <td>-3</td> <td>-2</td> <td>5</td> </tr><tr><td></td> <td></td> <td>-1</td> <td>2</td> <td>1</td> <td>1</td> </tr><tr><td></td> <td>1</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>6</td> </tr></tbody></table><p>&there4; Quotient (Q) = x<sup>3</sup> - 2x<sup>2</sup> - x -1</p> <p>Remainder (R) = 6 <sub>Ans</sub></p>

Q22:

Using synthetic division method, find the quotient and remainder when x3 - 2x + 3 is divided by x - 1.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>x<sup>3</sup> - 2x + 3 is divided by x - 1.</p> <table width="340"><tbody><tr><td>1</td> <td>1</td> <td>0</td> <td>-2</td> <td>3</td> </tr><tr><td></td> <td></td> <td>1</td> <td>1</td> <td>-1</td> </tr><tr><td></td> <td>1</td> <td>1</td> <td>-1</td> <td>2</td> </tr></tbody></table><p>Quotient (Q) = x<sup>2</sup> - x -1</p> <p>Remainder (R) = 2 <sub>Ans</sub></p>

Q23:

Divide the polynomial: f(x) = x3 +3x2 -4x +2 and g(x) = x + 1.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f(x)&divide; g(x) = \(\frac {x^3 +3x^2 -4x +2}{x +1}\)</p> <table width="303"><tbody><tr><td>x + 1</td> <td>x<sup>3</sup> + 3x<sup>2</sup> - 4x +2</td> <td>x<sup>2</sup> + 2x - 6</td> </tr><tr><td></td> <td> <p>x<sup>3</sup> + x<sup>2</sup></p> <p>- -</p> </td> <td></td> </tr><tr><td></td> <td>2x<sup>2</sup> - 4x + 2</td> <td></td> </tr><tr><td></td> <td> <p>2x<sup>2</sup> + 2x</p> <p>- -</p> </td> <td></td> </tr><tr><td></td> <td>-6x + 2</td> <td></td> </tr><tr><td></td> <td> <p>-6x - 6</p> <p>+ +</p> </td> <td></td> </tr><tr><td></td> <td>8</td> <td></td> </tr></tbody></table><p>&there4; Quotient Q(x) = x<sup>2</sup> + 2x - 6</p> <p>Remainder R(x) = 8 <sub>Ans</sub></p>

Q24:

 If x - k is a factor of the polynomial x3 - kx2 - 2x + k + 4, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>x - k is factor of the polynomialx<sup>3</sup> - kx<sup>2</sup> - 2x + k + 4, then x = k must satisfies the given polynomial, so that the given polynomial should be zero.</p> <p>x - k is a factor of f(k) then f(k) = 0</p> <p>f(k) = k<sup>3</sup> - k&sdot; k<sup>2</sup> - 2k + k + 4</p> <p>or, 0 = k<sup>3</sup> - k<sup>3</sup> -k +4</p> <p>or, 0 = -k +4</p> <p>&there4; k = 4 <sub>Ans</sub></p>

Q25:

If 2x + 1 is a factor of 2x3 + ax2 + x + 2, find the value of x.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f(x) =2x<sup>3</sup> + ax<sup>2</sup> + x + 2</p> <p>2x + 1 is a factor of f(x) so f(x) = 0</p> <p>2x + 1 = o</p> <p>or, 2x = -1</p> <p>&there4; x = - \frac 12</p> <p>2x<sup>3</sup> + ax<sup>2</sup> + x + 2 = 0</p> <p>or, 2&times; (- \(\frac 12)^3\) + a&sdot; (- \(\frac 12)^2\) - \(\frac 12\) + 2 = 0</p> <p>or, 2&times; - \(\frac 18\)+ a&sdot; \(\frac 14\) - \(\frac 12\) + 2 = 0</p> <p>or, - \(\frac 14\) + \(\frac a4\) - \(\frac 12\) + \(\frac 21\) = 0</p> <p>or, \(\frac {-1 +a -2 +8}{4}\) = 0</p> <p>or, a + 5 = 0</p> <p>&there4; a = -5 <sub>Ans</sub></p>

Q26:

Find the quotient and remainder when f(x) = 4x3 -6x2 -5 +3x is divided by x - 2 using systentic division method.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Arrange the given polynomial in decreasing order</p> <p>f(x) = 4x<sup>3</sup> -6x<sup>2</sup>+3x -5</p> <p>The constant term with the sign changed is +2</p> <p>&there4; x - 2 = x - (+2)</p> <p>Writes the coefficient of f(x) in decreasing order:</p> <table width="329"><tbody><tr><td>2</td> <td>4</td> <td>-6</td> <td>+3</td> <td>-5</td> </tr><tr><td></td> <td>&darr;</td> <td>8</td> <td>4</td> <td>14</td> </tr><tr><td></td> <td>4</td> <td>2</td> <td>7</td> <td>9</td> </tr><tr><td></td> <td></td> <td>Q</td> <td></td> <td>R</td> </tr></tbody></table><p>&there4; Quotient Q(x) = 4x<sup>2</sup> +2x +7</p> <p>Remainder R(x) = 9 <sub>Ans</sub></p>

Q27:

Find the quotient and remainder when f(t) = 7t4 -4t3 +6t +3 is divided by t -3 using synthetic method of division.  


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Arranging the given polynomial in descending order</p> <p>f(t) = 7t<sup>4</sup> -4t<sup>3</sup> +6t +3</p> <p>The constant term with sign changed is + 3,</p> <p>t - 3 = t - (+3)</p> <p>Write the coefficient in descending order;</p> <table width="315"><tbody><tr><td>+3</td> <td>7</td> <td>-4</td> <td>0</td> <td>6</td> <td>3</td> </tr><tr><td></td> <td>&darr;</td> <td>21</td> <td>51</td> <td>153</td> <td>477</td> </tr><tr><td></td> <td>7</td> <td>17</td> <td>51</td> <td>159</td> <td>480</td> </tr><tr><td></td> <td>Q</td> <td></td> <td></td> <td></td> <td>R</td> </tr></tbody></table><p>&there4; Quotient Q(t) = 7t<sup>3</sup> + 17x<sup>2</sup> +51x +159</p> <p>Remainder R(t) = 480 <sub>Ans</sub></p>

Q28:

(x + 2) is a factor of x3 + kx2 - 4x + 12, find the value of x.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>(x + 2) is a factor of x<sup>3</sup> + kx<sup>2</sup> - 4x + 12 or x + 2 = 0 or x = -2</p> <p>Putting the value x = -2 in the given expression and f(-2) = 0</p> <p>x<sup>3</sup> + kx<sup>2</sup> - 4x + 12 =0</p> <p>or, (-2)<sup>3</sup> + k(-2)<sup>2</sup> - 4&times; (-2) + 12 = 0</p> <p>or, -8 + 4k + 8 + 12 = 0</p> <p>or, 4k = -12</p> <p>or, k = - \(\frac {12}{4}\) = -3</p> <p>&there4; k = -3 <sub>Ans</sub></p> <p></p>

Q29:

If x - 3 is a factor of x3 + 4x2 + kx - 30, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>x - 3 is a factor of the given expression.</p> <p>So, x=3 must satisfy the given expression, then f(3) = 0</p> <p>f(x) = x<sup>3</sup> + 4x<sup>2</sup> + kx - 30</p> <p>or, f(3) = 3<sup>3</sup> + 4&times;3<sup>2</sup> + k&sdot;3 - 30</p> <p>or, 0 = 27 + 36 +3k -30</p> <p>or, 3k + 33 = 0</p> <p>or, 3k = -33</p> <p>or k = -\(\frac {33}{3}\) = -11</p> <p>&there4; k = -11 <sub>Ans</sub></p> <p></p>

Q30:

If (x - 2) is a factor of x3 - kx2 - x - 2, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x) = x<sup>3</sup> - kx<sup>2</sup> - x - 2</p> <p>If (x - 2) is a factor of f (x) then</p> <p>f(2) = 0</p> <p>f(2) =2<sup>3</sup> - k&sdot;2<sup>2</sup> - 2- 2</p> <p>or, 0 = 8 - 4k - 4</p> <p>or, 0 = 4 - 4k</p> <p>or, 4k = 4</p> <p>or, k = \(\frac 44\)</p> <p>&there4; k = 1 <sub>Ans</sub></p>

Q31:

What do you mean by a factor theorem? If x + 1 is a factor of 2x3 - kx2 - 8x + 5, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>If f(a0 = 0, the remainder when f(x) is divided by (x - a) is zero then (x - a) is factor of f(x).</p> <p>x + 1 = 0</p> <p>or, x = -1</p> <p>&there4; f(-1) = 0</p> <p>2x<sup>3</sup> - kx<sup>2</sup> - 8x + 5</p> <p>Putting the value of x = -1 in above relation,</p> <p>f(-1) = 2 (-1)<sup>3</sup> - k (-1)<sup>2</sup> - 8 (-1) + 5</p> <p>or, - 2 - k + 8 + 5 = 0</p> <p>or, 11 - k = 0</p> <p>&there4; k = 11 <sub>Ans</sub></p>

Q32:

A polynomial was divided by x - 1 and the quotient was x2 + 2x + 1 with the remainder 2. What was the original polynomial?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Quotient Q(x) =x<sup>2</sup> + 2x + 1, Remainder R(x) = 2, Original polynomial = f(x)</p> <p>We know,</p> <p>f(x) = (x + 1) Q(x) + R(x)</p> <p>or, f(x) = (x + 1) (x<sup>2</sup> + 2x + 1) + 2</p> <p>or, f(x) = x<sup>3</sup> + 2x<sup>2</sup> + x -x<sup>2</sup> - 2x - 1 + 2</p> <p>or, f(x) =x<sup>3</sup> + x<sup>2</sup>- x + 1 <sub>Ans</sub></p>

Q33:

If x - k is  a factor of the polynomial x3 - kx2 - 2x + k + 4, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let,</p> <p>f(k) =x<sup>3</sup> - kx<sup>2</sup> - 2x + k + 4</p> <p>If x - k is a factor of f(k) then f(k) = 0</p> <p>f(k) = k<sup>3</sup> - k&sdot;k<sup>2</sup> - 2k + k + 4</p> <p>or, 0 = k<sup>3</sup> - k<sup>3</sup> - k + 4</p> <p>or, 0 = -k + 4</p> <p>&there4; k = 4 <sub>Ans</sub></p>

Q34:

If x + 3 is a factor of x3 - (k - 1) x2 + kx +54. find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>x + 3 is a factor of the given expression.</p> <p>When x = -3, putting the value in the given expression equal to zero.</p> <p>(-3)<sup>3</sup> - (k - 1) (-3)<sup>2</sup> + k(-3) +54 = 0</p> <p>or, -27 -9k + 9 - 3k + 54 = 0</p> <p>or, -12k + 36 = 0</p> <p>or, -12k = -36</p> <p>or k = \(\frac {-36}{-12}\)</p> <p>&there4; k = 3 <sub>Ans</sub></p>

Q35:

Define the remainder theorem and find the remainder when 3x3 - 5x2 + 2x - 3 is divided by x - 2 with the help of remainder theorem.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>If a number C is substituted for x in the polynomial p(x) of degree n, then P(C) is the remainder that would be obtained by dividing p(x) by x - c.</p> <p>i.e. P(x) = Q(x)&sdot; (x - c) + P(c)</p> <p>where, Q(x) is a polynomial of degree n -1</p> <p>f(x) = 3x<sup>3</sup> - 5x<sup>2</sup> + 2x - 3 and g(x) = x - 2 = x - (-2)</p> <p>If f(x)&divide; g(x), quotient = Q and remainder (R) = ?</p> <p>f(2) = 3(2)<sup>3</sup> - 5(2)<sup>2</sup> + 2&times;2 - 3 = 24 - 20 + 4 -3 = 28 - 23 = 5</p> <p>Remainder (R) = 5 <sub>Ans</sub></p>

Q36:

State remainder theorem and use it to find the remainder when: x4 - 3x3 -2x2 +x +5 is divided by x + 1.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Remainder theorem: The remainder theorem states that if f(x) is divided by (x - a), then f(a) will be the remainder.</p> <p>x + 1 is a factor ofx<sup>4</sup> - 3x<sup>3</sup> -2x<sup>2</sup> +x +5</p> <p>f(-1) =(-1)<sup>4</sup> - 3(-1)<sup>3</sup> -2(-1)<sup>2</sup> +(-1) +5 = 1 +3 -2 -1 +5 = 6 <sub>Ans</sub></p> <p></p>

Q37:

Calculate the value of p if x + 2 is a factor of 3x2 + px2 - 2x - 8.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>x + 2 is a factor of 3x<sup>2</sup> + px<sup>2</sup> - 2x - 8, so the given expression is satisfies by x = -2</p> <p>3x<sup>2</sup> + px<sup>2</sup> - 2x - 8 = 0</p> <p>or, 3(-2)<sup>2</sup> + p(-2)<sup>2</sup> - 2(-2) - 8 = 0</p> <p>or, -24 + 4p +4 -8 = 0</p> <p>or, 4p = 28</p> <p>&there4; p = \(\frac {28}{4}\) = 7 <sub>Ans</sub></p>

Q38:

Define "Factor Theorem". Given that the function f(x) = 2x4 - 3x2 + 6x + k. if f(1) = 0, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Factor Theorem: If a polynomial f(x) is divided by (x - a) and remainder R = f(a) = 0 then x - a is a factor of f(x). This theorem is known as the factor theorem.</p> <p>Given,</p> <p>f(x) = 2x<sup>4</sup> - 3x<sup>2</sup> + 6x + k and f(1) = 0</p> <p>If x = 1 then</p> <p>2 &times; 1<sup>4</sup> - 3 &times; 1<sup>2</sup> + 6 &times; 1 + k = f(1)</p> <p>or, 2 - 3 + 6 + k = 0</p> <p>or, 5 + k = 0</p> <p>&there4; k = -5 <sub>Ans</sub></p>

Q39:

What do you mean by constant function? The range of the function f(x) = 7x - 8 is 12, find its domain.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Constant Function: A function f:A &rarr; B is called a constant function if there exists an element C&isin;B such that f(x) = C for all X&isin;A. A set containing only one element.</p> <p>Let: Y = f(x) = 7x - 8</p> <p>Y = 7x -8 [&there4; Range = 13]</p> <p>or, 7x = 13 + 8</p> <p>or, x = \(\frac {21}{7}\) = 3</p> <p>&there4; Domain = 3 <sub>Ans</sub></p>

Q40:

Define the remainder theorem and find the remainder when 2x3 - 7x2 + 5x + 4 is divided by (x - 3). 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Remainder Theorem: When a polynomial f(x) is divided by a linear polynomial x - a then the remainder R is given by the value f(a) of the polynomial, R = f(a).</p> <table width="303"><tbody><tr><td>x - 3</td> <td>2x<sup>3</sup> - 7x<sup>2</sup> + 5x + 4</td> <td>2x<sup>2</sup> - x + 2</td> </tr><tr><td></td> <td> <p>2x<sup>3</sup> - 6x<sup>2</sup> - 445</p> <p>- + -</p> </td> <td></td> </tr><tr><td></td> <td>- x<sup>2</sup> + 5x + 4</td> <td></td> </tr><tr><td></td> <td> <p>- x<sup>2</sup> + 3x</p> <p>+ -</p> </td> <td></td> </tr><tr><td></td> <td>2x + 4</td> <td></td> </tr><tr><td></td> <td> <p>2x - 6</p> <p>- +</p> </td> <td></td> </tr><tr><td></td> <td>10</td> <td></td> </tr></tbody></table><p>&there4; Remainder = 10 <sub>Ans</sub></p>

Q41:

Give the definition of remainder theorem. If a + 1 is a factor of a4 - 3a3 - 2a2 + a + p, find the value of p.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Remainder Theorem: If f(x) is a polynomial of degree n in x and if f(x)is divided by x - a, then the remainder is f(a). This theory is known as Remainder Theorey.</p> <p>Let: f(x) =a<sup>4</sup> - 3a<sup>3</sup> - 2a<sup>2</sup> + a + p</p> <p>If a + 1 is factor of f(x) then f(-1) = 0</p> <p>f(-1) =(-1)<sup>4</sup> - 3(-1)<sup>3</sup> - 2(-1)<sup>2</sup> + (-1) + p</p> <p>or, 0 = 1 + 3 - 2 - 1 + p</p> <p>or, p + 1 = 0</p> <p>&there4; p = -1 <sub>Ans</sub></p>

Q42:

If f(2) = 8 and f(x) = 2x3 + 3x2 + k (1 - \(\frac {3x}{k}\) ), find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(2) = 8</p> <p>f(2) =2&times;2<sup>3</sup> + 3&times;2<sup>2</sup> + k (1 - \(\frac {3&times;2}{k}\) )</p> <p>or, 8 = 16 + 12 +k (1- \(\frac 6k\))</p> <p>or, 28 + k \(\frac {k-6}{k}\) = 8</p> <p>or, k - 6 = 8 - 28</p> <p>or, k = -20 + 6</p> <p>&there4; k = -14 <sub>Ans</sub></p>

Q43:

Using the remainder theorem, find the remainder when 3x3 - 2x2 + 4x - 1 is divided by 3x + 2?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x) =3x<sup>3</sup> - 2x<sup>2</sup> + 4x - 1 and g(x) = 3x + 2</p> <p>g(x) = x + \(\frac 23\) = x - (- \(\frac 23\))</p> <p>In f(x)&divide; g(x), remainder R = f(a) where a = - \(\frac 23\)</p> <p>f(-\( \frac 23\)) = 3 (-\( \frac 23)^3\) + 2 (-\( \frac 23)^2\) + 4&times;(-\(\frac 23\)) - 1</p> <p>= -\(\frac 89\) + \(\frac 89\) - \(\frac 83 \)- 1</p> <p>= \(\frac {-8-3}{3}\)</p> <p>= -\(\frac {11}{3}\)</p> <p>&there4; Remainder R =f(- \(\frac 23\)) =-\(\frac {11}{3}\) <sub>Ans</sub></p> <p></p>

Q44:

If 2x - 5 is a factor of 6x3 - (k + 6)x2 + 2kx - 25, find the value of k.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>f(x) =6x<sup>3</sup> - (k + 6)x<sup>2</sup> + 2kx - 25</p> <p>If (2x - 5) is a factor of f(x) then f(\(\frac 52\)) = 0</p> <p>f(\frac 52) = 6(\(\frac 52)^3\) - (k + 6)(\(\frac 52)^2\) + 2k(\(\frac 52\)) - 25</p> <p>or, 0 = \(\frac {375}{4}\) - \(\frac{25}{4}\) (k + 6) + 5k - 25</p> <p>or, 0 = \(\frac {375 - 25k - 150 + 20k - 100}{4}\)</p> <p>or, -5k + 125 = 0</p> <p>or, -5k = -125</p> <p>or, k = \(\frac {-125}{-5}\)</p> <p>&there4;k = 25 <sub>Ans</sub></p> <p></p>

Q45:

Define inverse function. Find the inverse function of f = {(2, 5), (3, 6), (-4, 1). (7, 4)}.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let, f: A&rarr;B be a one to one onto function then a function f<sup>-1</sup> : B&rarr;A is called an inverse function of f. i.e.</p> <figure class="" style="width: 500px;"><img src="/uploads/a52.jpg" alt="dsv" width="500" height="173"><figcaption><br></figcaption></figure><p>f = {(2, 5), (3, 6), (-4, 1). (7, 4)}</p> <p>f<sup>-1 </sup>={(5, 2), (6, 3), (1, -4). (4, 7)} <sub>Ans</sub></p>

Q46:

If f(x) = 2x3 + 3x2 - 3x + p and f(2) = 8, find the value of P.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f(x) = 2x<sup>3</sup> + 3x<sup>2</sup> - 3x + p and f(2) = 8</p> <p>Putting the value of x = 2,</p> <p>f(2) = 2 &times; 2<sup>3</sup> + 3 &times; 2<sup>2</sup> - 3 &times; 2 + p</p> <p>or, 8 = 16 + 12 - 6 + p</p> <p>or, p = 8 - 22</p> <p>&there4; p = -14 <sub>Ans</sub></p>

Q47:

If f(x) = 2x4 - 3x2 + 6x + k and f(1) = 0, then find the value of k. 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f(x) = 2x<sup>4</sup> - 3x<sup>2</sup> + 6x + k and f(1) = 0</p> <p>Putting the value of x = 1</p> <p>f(1) = 2 &times; 1<sup>4</sup> - 3 &times; 1<sup>2</sup> + 6 &times; 1 + k</p> <p>or, 0 = 2 -3 + 6 + k</p> <p>or, k + 5 = 0</p> <p>&there4; k = - 5 <sub>Ans</sub></p>

Q48:

Let f(x) = x2 and g(x) = 3x, find:

  1. fog(x)
  2.  gof(x)
  3. fog(2)
  4. gof(2)

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p></p> <p>Here,</p> <p>f(x) = x<sup>2</sup> and g(x) = 3x</p> <ol><li type="a">fog(x) = f(3x) = (3x)<sup>2</sup> =9x<sup>2</sup><sub>Ans</sub></li> <li type="a">gof(x) = g(x<sup>2</sup>) = 3x<sup>2</sup><sub>Ans</sub></li> <li type="a">fog(2) = 9x<sup>2</sup> = 9 (2)<sup>2</sup> = 36 <sub>Ans</sub></li> <li type="a">gof(2) = 3x<sup>2</sup> = 3 (2)<sup>2</sup> = 12 <sub>Ans</sub></li> </ol>

Q49:

If f(x) = 2x - 3 and g(x) = 3x + 4 find:

  1. gof (x)
  2. fog-1 (x)
  3. f-1og(2)
  4. fog (-3)

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>i. gof(x)</p> <p>= g(2x - 3) [\(\because\) f(x) = 2x - 3]</p> <p>= 3(2x - 3) + 4 [\(\because\) g(x) = 3x + 4]</p> <p>= 6x - 9 + 4</p> <p>= 6x -5 <sub>Ans</sub></p> <p>Let, y = f(x) = 2x - 3</p> <p>&there4; y = 2x - 3</p> <p>Interchanging the place of x and y</p> <p>x = 2y - 3</p> <p>or, 2y = x + 3</p> <p>or, y = \(\frac {x+3}{2} \)</p> <p>i.e. f<sup>-1</sup>(x) =\(\frac {x+3}{2}\)</p> <p>Let, y= g(x) = 3x + 4</p> <p>&there4; y = 3x + 4</p> <p>Interchanging the place of x and y</p> <p>x = 3y + 4</p> <p>or, 3y = x - 4</p> <p>or, y = \(\frac {x-4}{3}\)</p> <p>i.e. g<sup>-1</sup>(x) =\(\frac {x-4}{3}\)</p> <p>ii. fog<sup>-1</sup>(x)</p> <p>= f\(\frac {x-4}{3}\) [\(\because\) g<sup>-1</sup>(x) =\(\frac {x-4}{3}\) ]</p> <p>= 2 \(\frac {x-4}{3}\) -3</p> <p>= \(\frac {2x- 8 - 9}{3}\)</p> <p>= \(\frac {2x - 17}{3} \)<sub>Ans</sub></p> <p>iii. f<sup>-1</sup>og (2)</p> <p>= f<sup>-1</sup>(3&times; 2 + 4)</p> <p>=f<sup>-1</sup>(10)</p> <p>= \(\frac {10 + 3}{2}\) [\(\because\) \(\frac {x+3}{2}\)]</p> <p>= \(\frac {13}{2}\) <sub>Ans</sub></p> <p>iv. fog(-3)</p> <p>= f(3&times; -3 + 4) [\(\because\) g(x) = 3x + 4]</p> <p>= f( -9 + 4)</p> <p>= f(-5)</p> <p>= 2&times; (-5) - 3</p> <p>= -10 - 3</p> <p>= -13 <sub>Ans</sub></p> <p></p>

Q50:

If f(x) = 8 - 3x, evaluate f-1 (-4) and ff(2).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>let, y= f(x) = 8 - 3x</p> <p>Interchanging the place of x and y</p> <p>x = 8 - 3y</p> <p>or, 3y = 8 - x</p> <p>&there4; y = \(\frac {8 - x}{3}\)</p> <p>i.e. f<sup>-1</sup>(x) = \(\frac {8 - x}{3}\)</p> <p>i. f<sup>-1</sup>(-4) = \(\frac {8 - (-4)}{3}\) = \(\frac {12}{3}\) = 4 <sub>Ans</sub></p> <p>ff(x) = f(8 - 3x) = 8 - 3(8- 3x) = 8 - 24 + 9x = 9x - 16</p> <p>ff(2) = 9&times; 2 - 16 = 18 - 16 = 2 <sub>Ans</sub></p> <p></p> <p></p>

Q51:

It is given that the function f(x) = 4x + 7 and g(x) = 3x - 5. If fg-1(x) = 15, find the value of x.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let, y = g(x) = 3x - 5</p> <p>y = 3x - 5 ---------- (1)</p> <p>Interchanging the place of xand y in equation (1)</p> <p>x = 3y - 5</p> <p>or, 3y = x + 5</p> <p>&there4; y = \(\frac {x + 5}{3}\)</p> <p>i.e. g<sup>-1</sup>(x) = \(\frac {x + 5}{3}\)</p> <p>fg<sup>-1</sup>(x) = 15</p> <p>or, f\(\frac {x + 5}{3}\)=15</p> <p>or, 4\(\frac {x + 5}{3}\) = 15</p> <p>or, \(\frac {4x + 20 + 21}{3}\) = 15</p> <p>or, 4x + 41 = 45</p> <p>or, 4x = 45 - 41 = 4</p> <p>or, x = \(\frac 44\)</p> <p>&there4; x = 1 <sub>Ans</sub></p>

Q52:

If f(x) = 3x + 5, find ff-1(2) and f-1(3).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let, y = f(x) = 3x + 5</p> <p>or, y= 3x + 5</p> <p>Interchanging the position of x and y,</p> <p>x = 3y + 5</p> <p>or, 3y = x - 5</p> <p>or, y = \(\frac {x - 5}{3}\)</p> <p>&there4; f<sup>-1</sup>(x) =\(\frac {x - 5}{3}\)</p> <p>f<sup>-1</sup>(2) =\(\frac {2 - 5}{3}\) = - \(\frac 33\) = -1</p> <p>ff<sup>-1</sup>(2) = f(-1) = 3&times; (-1) + 5 = - 3 + 5 = 2</p> <p>f<sup>-1</sup>f(3) = f<sup>-1</sup> (3&times; 3 +5) = f<sup>-1</sup> (14) = \(\frac {14 - 5}{3}\) = \(\frac 93\) = 3</p> <p>Hence, ff<sup>-1</sup>(2) = 2</p> <p>f<sup>-1</sup> f(3) = 3 <sub>Ans</sub></p> <p></p>

Q53:

If f(x) = 3x - 4, g(x) = x + 3, h(x) = - 2x + 1, find ghf(x) and g-1hf(x).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>ghf(x)</p> <p>= gh(3x - 4)</p> <p>= g [ -2 (3x - 4) + 1]</p> <p>= g(-6x + 8 + 1)</p> <p>= g(- 6x + 9)</p> <p>= -6x + 9 +3</p> <p>= - 6x + 12</p> <p>Let,</p> <p>y = g(x) = x + 3</p> <p>&there4; y = x + 3</p> <p>Interchanging the place of x and y,</p> <p>x = y + 3</p> <p>or, x - 3 = y</p> <p>i.e y = x - 3 [\(\because\) g<sup>-1</sup>(x) = x - 3]</p> <p>g<sup>-1</sup>hf(x)</p> <p>= g<sup>-1</sup>h(3x - 4)</p> <p>= g<sup>-1</sup> [ - 2(3x - 4) + 1]</p> <p>= g<sup>-1</sup> (-6x + 8 + 1)</p> <p>= g<sup>-1</sup> (-6x + 9)</p> <p>= - 6x + 9 -3</p> <p>= - 6x + 6</p> <p>Hence, ghf(x) = - 6x + 12</p> <p>and, g<sup>-1</sup>hf(x) = -6x + 6 <sub>Ans</sub></p>

Q54:

If f(x) = 3x + 4; g(x) = 2(x + 1), prove that fog = gof and find the value of f-1(2).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Given,</p> <p>f(x) = 3x + 4</p> <p>g(x) = 2(x + 1) = 2x + 2</p> <p>f<sub>o</sub>g(x) = f(2x + 2) = 3 (2x + 2) + 4 = 6x + 6 + 4 = 6x + 10</p> <p>g<sub>o</sub>f(x) = g(3x + 4) = 2 (3x + 4) + 2 = 6x + 8 +2 =6x + 10</p> <p>Hence, f<sub>o</sub>g(x) = g<sub>o</sub>f(x) <sub>proved</sub></p> <p>Let y = 3x + 4 = f(x)</p> <p>y = 3x + 4</p> <p>Interchanging the place of x and y</p> <p>x = 3y + 4</p> <p>or, 3y = x - 4</p> <p>or, y = \(\frac {x - 4}{3}\)</p> <p>f<sup>-1</sup>(x) = \(\frac {x - 4}{3}\)</p> <p>&there4; f<sup>-1</sup>(2) = \(\frac {2 - 4}{3}\) = - \(\frac 23\)<sub>Ans</sub></p>

Q55:

If f(x) =\( \frac {1}{x}\), x ≠ 0.Prove that fof-1 = f-1of.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let y = f(x) = \(\frac 1x\)</p> <p>y = \(\frac 1x\)</p> <p>Interchanging the place of x and y</p> <p>x = \(\frac 1y\)</p> <p>y = \(\frac 1x\)</p> <p>&there4; f<sup>-1</sup>(x) = \(\frac 1x\)</p> <p>L.H.S</p> <p>=fof<sup>-1</sup> (x)</p> <p>= f\(\frac 1x\)</p> <p>=\( \cfrac{1}{<br>\cfrac{1}{x}}\)</p> <p>= x</p> <p>R.H.S</p> <p>= f<sup>-1</sup>of(x)</p> <p>= f<sup>-1</sup>\(\frac 1x\)</p> <p>= \(\cfrac{1}{<br>\cfrac{1}{x}}\)</p> <p>= x</p> <p>Hence, L.H.S = R.H.S <sub>proved</sub></p> <p></p> <p></p>

Q56:

If f(x) = \(\frac{x}{x - 3}\), find the value of x for which f(x) = f-1(x).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let y = f(x) =\(\frac {x}{x-3}\)</p> <p>y = \(\frac {x}{x - 3}\)</p> <p>Interchanging the place of x and y,</p> <p>x = \(\frac {y}{y - 3}\)</p> <p>or, xy- 3x= y</p> <p>or, xy - y = 3x</p> <p>or, y (x - 1) = 3x</p> <p>or, y = \(\frac {3x}{x - 1}\)</p> <p>i.e., f<sup>-1</sup>(x) = \(\frac {3x}{x - 1}\)</p> <p>From the question, f(x) = f<sup>-1</sup>(x)</p> <p>\(\frac {x}{x - 3}\) =\(\frac {3x}{x - 1}\)</p> <p>or, x<sup>2</sup> - x = 3x<sup>2</sup> - 9x</p> <p>or, 3x<sup>2</sup> - 9x - x<sup>2</sup> + x = 0</p> <p>or, 2x<sup>2</sup> - 8x = 0</p> <p>or, 2x(x - 4) = 0</p> <p>Either, x = 0 and x - 4 = 0 or, x = 4</p> <p>&there4;x = 0, 4 <sub>Ans</sub></p> <p></p> <p></p>

Q57:

It is given that f(x) = x2 - 2x and g(x) = 2x + 3. If fg-1(x) = 3, calculate the value of x.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f(x) = x<sup>2</sup> - 2x and g(x) = 2x + 3</p> <p>Let: y = g(x) = 2x + 3</p> <p>Interchanging the place of x and y</p> <p>x = 2y + 3</p> <p>or, 2y = x - 3</p> <p>or, y = \(\frac {x-3}{2}\)</p> <p>&there4; g<sup>-1</sup>(x) =\(\frac {x-3}{2}\)</p> <p>fg<sup>-1</sup>(x) = 3</p> <p>f\(\frac {x-3}{2}\) = 3</p> <p>or, \((\frac {x-3}{2})^2\) - 2 \(\frac {x-3}{2}\) = 3</p> <p>or, \(\frac {x^2 - 6x + 9}{4}\) -\(\frac {x-3}{2}\) = 3</p> <p>or, \(\frac {x^2 - 6x + 9 - 4x + 12}{4}\) = 3</p> <p>or, x<sup>2</sup> - 10x + 21 =12</p> <p>or, x<sup>2</sup> -10x + 21 - 12 = 0</p> <p>or, x<sup>2</sup> - 10x + 9 = 0</p> <p>or, x<sup>2</sup> - 9x - x + 9 = 0</p> <p>or, x(x - 9) -1 (x - 9)= 0</p> <p>or, (x - 9) (x - 1) = 0</p> <p>Either, x - 9 = 0 i.e. x = 9</p> <p>or, x - 1 = 0 i.e. x = 1</p> <p>&there4; x = 9 and 1 <sub>Ans</sub></p> <p></p>

Q58:

If f(x) = 1 + 2x and g(x) = \(\frac {1}{1-x}\), find the value of g-1 \(\frac 12\) and fg (-1).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let: y =g(x) = \(\frac {1}{1-x}\)</p> <p>y = \(\frac {1}{1-x}\)</p> <p>Interchanging the place of x and y</p> <p>x =\(\frac {1}{1-y}\)</p> <p>or, 1 - y = \(\frac 1x\)</p> <p>or, y = 1 - \(\frac 1x\) = \(\frac {x - 1}{x}\)</p> <p>g<sup>-1</sup>(x) = \(\frac {x - 1}{x}\)</p> <p>g<sup>-1</sup>\(\frac 12\)</p> <p>= \(\cfrac{(\frac{1}{2})-1}{<br>\cfrac{1}{2}}\)</p> <p>= \(\frac {1-2}{2}\)&times; \(\frac 21\)</p> <p>= -1 <sub>Ans</sub></p> <p>Again, fg(x) = f\(\frac {1}{1-x}\) = 1 + \(\frac {2&times;1}{1-x}\)</p> <p>fg(x) = f\(\frac {1}{1-x}\) = 1 + \(\frac {2&times;1}{1-x}\)</p> <p>= f\(\frac {1}{1-x}\) = 1 + \(\frac {2&times;1}{1-x}\)</p> <p>= 1 + \(\frac {2&times;1}{1-x}\)</p> <p>= \(\frac {1 - x + 2}{1 - x}\)</p> <p>= \(\frac {3 - x}{1 - x}\)</p> <p>fg(-1)</p> <p>= \(\frac {3 - (-1)}{1 - (-1)}\)</p> <p>= \(\frac {3 + 1}{1 + 1}\)</p> <p>= \(\frac 42\)</p> <p>= 2 <sub>Ans</sub></p>

Q59:

If function f(x) = \(\frac {2x + 3}{x + 2}\) and g(x) = x - 2, find the values of f-1(x), f-1(1), fg (x) and fg(1).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let: y = f(x) = \(\frac {2x + 3}{x + 2}\)</p> <p>Interchanging the position of x and y</p> <p>x= \(\frac {2y + 3}{y + 2}\)</p> <p>or, xy+ 2x - 2y = 3</p> <p>or, y(x - 2) = 3 - 2x</p> <p>&there4;y= \(\frac {3 - 2x}{x - 2}\)</p> <ol><li type="i">f-1(x) = \(\frac {3 - 2x}{x - 2}\)</li> <li type="i">f-1(1) = \(\frac {3 - 2(1)}{1 - 2}\) = -\(\frac 11\) = -1</li> <li type="i">fg(x) = f(x - 2) =\(\frac {2(x-2) + 3}{(x-2) + 2}\) =\(\frac {2x - 4 + 3}{x}\) = \(\frac {2x-1}{x}\)</li> <li type="i">fg(1) = \(\frac {2&times;1-1}{1}\) = \(\frac {2-1}{1}\)<sub>Ans</sub></li> </ol>

Q60:

If f(x) = \(\frac {3x + 11}{x - 3}\), x ≠ 3 and g(x) - \(\frac {x - 3}{2}\) are given functions. Find f-1(x) and if f(x) = g-1(x) find the value of x.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let, y= f(x) =\(\frac {3x + 11}{x - 3}\)</p> <p>Interchanging the value of x and y,</p> <p>x =\(\frac {3y + 11}{y - 3}\)</p> <p>or, xy - 3x = 3y + 11</p> <p>or, xy - 3y = 3x + 11</p> <p>or, y(x - 3) = 3x + 11</p> <p>or, y = \(\frac {3x + 11}{x - 3}\)</p> <p>&there4; f<sup>-1</sup>(x) = \(\frac {3x + 11}{x - 3}\) <sub>Ans</sub></p> <p>Again,</p> <p>Let: y = g(x) = \(\frac {x - 3}{2}\)</p> <p>y =\(\frac {x - 3}{2}\)</p> <p>Interchanging the place of x and y,</p> <p>x =\(\frac {y - 3}{2}\)</p> <p>or, 2x = y - 3</p> <p>or, y = 2x + 3</p> <p>&there4; g<sup>-1</sup>(x) = 2x + 3</p> <p>From the given question,</p> <p>f(x) = g<sup>-1</sup>(x)</p> <p>or,\(\frac {3x + 11}{x - 3}\) = 2x + 3</p> <p>or, 3x + 11 = 2x<sup>2</sup> + 3x - 6x - 9</p> <p>or, 2x<sup>2</sup> - 3x - 9 - 3x - 11 = 0</p> <p>or, 2x<sup>2</sup> - 6x - 20 = 0</p> <p>or, 2(x<sup>2</sup> - 3x - 10) = 0</p> <p>or, x<sup>2</sup> - 5x + 2x - 10 = 0</p> <p>or, x(x - 5) + 2(x - 5) = 0</p> <p>or, (x - 5) (x + 2) = 0</p> <p>Either, x - 5 = 0&there4; x = 5</p> <p>Or, x + 2 = 0&there4; x = -2</p> <p>Hence, x = 5 or -2 <sub>Ans</sub></p> <p></p>

Q61:

It is given that the function f(x) = 4x + 7 and g(x) = 3x - 5. If fg-1(x) = 15, find the value of x.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>Let: y = g(x) = 3x - 5</p> <p>y = 3x - 5 ------------------(1)</p> <p>Interchanging the position of x and y in equation (1),</p> <p>x = 3y - 5</p> <p>or, 3y = x + 5</p> <p>or, y = \(\frac {x + 5}{3}\)</p> <p>&there4; g<sup>-1</sup>(x) = \(\frac {x + 5}{3}\)</p> <p>fg<sup>-1</sup>(x) = 15</p> <p>or, f \(\frac {x + 5}{3}\) = 15</p> <p>or, 4 \(\frac {x + 5}{3}\) + 7 = 15</p> <p>or, \(\frac {4x + 20}{3}\) + 7 = 15</p> <p>or, \(\frac {4x + 20 + 21}{3}\) = 15</p> <p>or, 4x + 41 = 45</p> <p>or, 4x = 45 - 41</p> <p>or, 4x = 4</p> <p>or, x = \(\frac 44\)</p> <p>&there4; x = 1 <sub>Ans</sub></p>

Q62:

Solve the equation:

x3 - 4x2 + x + 6 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>x<sup>3</sup> - 4x<sup>2</sup> + x + 6 = 0</p> <p>(x - 2) is a factor ofx<sup>3</sup> - 4x<sup>2</sup> + x + 6</p> <p>or, x<sup>3</sup> - 2x<sup>2</sup> - 2x<sup>2</sup> + 4x - 3x + 6 = 0</p> <p>or, x<sup>2</sup>(x - 2) - 2x(x - 2) - 3(x - 2) = 0</p> <p>or, (x - 2) (x<sup>2</sup> - 2x - 3) = 0</p> <p>or, (x - 2) (x<sup>2</sup> - 3x + x - 3) = 0</p> <p>or, (x - 2) [x(x - 3) + 1(x - 3)] = 0</p> <p>or, (x - 2) (x - 3) (x + 1) = 0</p> <p>Either, x - 2 = 0 &there4; x = 2</p> <p>Or, x - 3 = 0 &there4; x = 3</p> <p>or, x + 1 = 0 &there4; x = - 1</p> <p>Hence, x = 2, 3, -1 Ans</p> <p>Rough:</p> <p>x = 2</p> <p>x<sup>3</sup> - 4x<sup>2</sup> + x + 6</p> <p>= 2<sup>3</sup> - 4&sdot; 2<sup>2</sup> + 2 +6</p> <p>= 16 - 16</p> <p>= 0</p>

Q63:

Solve:

2x3 + 3x2 - 11x - 6 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>x - 2 is a factor of given expression</p> <p>or, 2x<sup>3</sup> - 4x<sup>2</sup> + 7x<sup>2</sup> - 14x + 3x - 6 = 0</p> <p>or, 2x<sup>2</sup> (x - 2) + 7x (x - 2) + 3 (x - 2) = 0</p> <p>or, (x - 2) (2x<sup>2</sup> + 7x + 3) = 0</p> <p>or, (x - 2) (2x<sup>2</sup> + 6x + x +3) = 0</p> <p>or, (x - 2) [2x (x + 3) + 1 (x + 3)] = 0</p> <p>or, (x - 2) (x + 3) (2x + 1) = 0</p> <p>Either, x + 3 = 0&there4; x = -3</p> <p>Or, x - 2 = 0&there4; x = 2</p> <p>Or, 2x + 1 = 0&there4; x = -\(\frac 12\)</p> <p>&there4; x = 2 , - 3 , -\(\frac12\) <sub>Ans</sub></p> <p>Rough:</p> <p>If x = 2</p> <p>2x<sup>3</sup> + 3x<sup>2</sup> - 11x - 6</p> <p>= 2(2)<sup>3</sup> + 3(2)<sup>2</sup> - 11(2) - 6</p> <p>= 16 + 12 - 22 - 6</p> <p>= 0</p>

Q64:

Solve:

3x3 - 13x2 + 16 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>x = -1 is correct.</p> <p>x + 1 is a factor of above equation.</p> <p>or, 3x<sup>3</sup> + 3x<sup>2</sup> - 16x<sup>2</sup> - 16x + 16x + 16 = 0</p> <p>or, 3x<sup>2</sup>(x + 1) - 16x(x + 1) + 16(x + 1) = 0</p> <p>or, (x + 1) (3x<sup>2</sup> - 16x + 16) = 0</p> <p>or, (x + 1) (3x<sup>2</sup> - 12x - 4x + 16) = 0</p> <p>or, (x + 1) [3x (x - 4) - 4 (x - 4)] = 0</p> <p>or, (x + 1) (x - 4) (3x - 4) = 0</p> <p>Either, x + 1 = 0 &there4; x = - 1</p> <p>Or, x - 4 = 0 &there4; x = 4</p> <p>Or, 3x - 4 = 0 &there4; x = \(\frac 43\)</p> <p>&there4; x = -1, 4 and \(\frac 43\) <sub>Ans</sub></p> <p>Rough:</p> <p>Put x = -1</p> <p>or, 3(-1)<sup>3</sup> - 13(-1)<sup>2</sup> + 16 = 0</p> <p>or, -3 -13 + 16 = 0</p> <p>or, - 16 + 16 = 0</p> <p>&there4; 0 = 0</p>

Q65:

Solve:

x3 - 19x - 30 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>x + 2 is a factor of given equation.</p> <p>x<sup>3</sup> + 2x<sup>2</sup> - 2x<sup>2</sup> - 4x - 15x - 30 = 0</p> <p>or, x<sup>2</sup>(x + 2) - 2x(x + 2) - 15(x + 2) = 0</p> <p>or, (x + 2) (x<sup>2</sup> - 2x - 15) = 0</p> <p>or, (x + 2) (x<sup>2</sup> - 5x + 3x - 15) = 0</p> <p>or, (x + 2) [x(x - 5) + 3(x - 5)] = 0 </p> <p>or, (x + 2) (x - 5) (x + 3) = 0</p> <p>Either, x + 2 = 0 &there4; x = -2</p> <p>Or, x - 5 = 0 &there4; x = 5 </p> <p>Or, x + 3 = 0 &there4; x = -3</p> <p>&there4; x = -2, -3, 5 <sub>Ans</sub></p>

Q66:

Solve:

x3 - 3x - 2 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>x<sup>3</sup> - 3x - 2 = 0</p> <p>x + 1 is a factor of given equation,</p> <p>or, x<sup>3</sup> + x<sup>2</sup> - x<sup>2</sup> - x - 2x - 2 = 0</p> <p>or, x<sup>2</sup> (x + 1) - x (x + 1) - 2 (x + 1) = 0</p> <p>or, (x + 1) (x<sup>2</sup> - x - 2) = 0</p> <p>or, (x + 1) [x(x - 2) + 1 -(x - 2)] = 0</p> <p>or, (x + 1) (x - 2) (x + 1) = 0</p> <p>Either, x + 1 = 0 &there4; x = -1</p> <p>Or, x - 2 = 0 &there4; x = 2</p> <p>&there4; x = -1 and 2 <sub>Ans</sub></p>

Q67:

Solve:

(x + 1) (x + 2) (x + 3) (x + 4) - 8 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>(x + 1) (x + 2) (x + 3) (x + 4) - 8 = 0</p> <p>or, (x<sup>2</sup> + x + 4x + 4) ( x<sup>2</sup> + 2x + 3x + 6) - 8 = 0</p> <p>or, (x<sup>2</sup> + 5x + 4) (x<sup>2</sup> + 5x + 6) - 8 = 0</p> <p>Let: x<sup>2</sup> + 5x = k</p> <p>(k + 4) (k + 6) - 8 = 0</p> <p>or, k<sup>2</sup> + 6k + 4k + 24 - 8 = 0</p> <p>or, k<sup>2</sup> + 10k + 16 = 0</p> <p>or, k<sup>2</sup> + 8k + 2k + 16 = 0</p> <p>or, k(x + 8) + 2(x + 8) = 0</p> <p>or, (k + 2) (x + 8) = 0</p> <p>Putting the value of k</p> <p>(x<sup>2</sup> + 5x + 8) (x<sup>2</sup> + 5x + 2) = 0</p> <p>Either, x<sup>2</sup> + 5x + 8 = 0 --------------(1)</p> <p>Or, x<sup>2</sup> + 5x + 2 = 0 ------------------(2)</p> <p>Taking eq<sup>n</sup>(1)</p> <p>x =\(\frac {-5 &plusmn; (\sqrt{5^{2}-4&times;1&times;8})}{2&times;1}\) =\(\frac {-5 &plusmn; \sqrt{-7}}{2&times;1}\) (Impossible)</p> <p>Taking eq<sup>n</sup>(2)</p> <p>x =\(\frac {-5 &plusmn; (\sqrt{5^{2}-4&times;1&times;2})}{2&times;1}\) =\(\frac {-5 &plusmn; \sqrt{17}}{2&times;1}\) <sub>Ans</sub></p> <p></p> <p></p> <p></p>

Q68:

Divide the polynomials using synthetic method.

f(x) = x4 - x3 - 3x2 - 2x + 5, where x = 2, -1, 3


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>f(x) = x<sup>4</sup> - x<sup>3</sup> - 3x<sup>2</sup> - 2x + 5</p> <p>When x = 2 then,</p> <table width="446"><tbody><tr><td>2</td> <td>1</td> <td>-1</td> <td>-3</td> <td>-2</td> <td>5</td> </tr><tr><td></td> <td></td> <td>2</td> <td>2</td> <td>-2</td> <td>-8</td> </tr><tr><td></td> <td>1</td> <td>1</td> <td>-1</td> <td>-4</td> <td>-3</td> </tr></tbody></table><p>&there4; Quotient = x<sup>3</sup> + x<sup>2</sup> - x - 4 and f(x) = -3 <sub>Ans</sub></p> <p>When x = -1 then,</p> <table width="449"><tbody><tr><td>-1</td> <td>1</td> <td>-1</td> <td>-3</td> <td>-2</td> <td>5</td> </tr><tr><td></td> <td></td> <td>-1</td> <td>2</td> <td>1</td> <td>1</td> </tr><tr><td></td> <td>1</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>6</td> </tr></tbody></table><p>&there4; Quotient = x<sup>3</sup> - 2x<sup>2</sup> - x - 1 and f(2) = 6 <sub>Ans</sub></p> <p>When x = 3 then,</p> <table width="450"><tbody><tr><td>3</td> <td>1</td> <td>-1</td> <td>-3</td> <td>-2</td> <td>5</td> </tr><tr><td></td> <td></td> <td>3</td> <td>6</td> <td>9</td> <td>21</td> </tr><tr><td></td> <td>1</td> <td>2</td> <td>3</td> <td>7</td> <td>26</td> </tr></tbody></table><p>&there4; Quotient = x<sup>3</sup> + 2x<sup>2</sup> + 3x + 7 and f(3) = 26 <sub>Ans</sub></p>

Q69:

Solve:

x3 - x2 - 14x + 24 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>x - 2 = 0</p> <p>x - 2 is a factor of given expression</p> <p>or, x<sup>3</sup> - x<sup>2</sup> - 14x + 24 = 0</p> <p>or, x<sup>3</sup> - 2x<sup>2</sup> + x<sup>2</sup> - 2x - 12x + 24 = 0</p> <p>or, x<sup>2</sup>(x - 2) + x(x- 2) - 12(x - 2) = 0</p> <p>or, (x - 2) (x<sup>2</sup> + x -12) = 0</p> <p>or, (x - 2) (x<sup>2</sup> + 4x - 3x - 12) = 0</p> <p>or, (x - 2) [x(x + 4) - 3(x + 4)] = 0</p> <p>or, (x - 2) (x + 4) (x -3) = 0</p> <p>Either, x - 2 = 0 &there4;x = 2</p> <p>Or, x + 4 = 0 &there4; x = - 4</p> <p>Or, x - 3 = 0 &there4; x = 3</p> <p>&there4; x = 2, 3, -4 Ans</p> <p>Rough:</p> <p>x = 2</p> <p>i.e 2<sup>3</sup> - 2<sup>2</sup> - 14&times; 2 + 24</p> <p>= 8 - 4 -28 + 24</p> <p>= 0</p>

Q70:

Solve:

2x3 - 3x2 - 3x + 2 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>2x<sup>3</sup> - 3x<sup>2</sup> - 3x + 2 = 0</p> <p>or, 2x<sup>3</sup> + 2 - 3x<sup>2</sup> - 3x = 0</p> <p>or, 2(x<sup>3</sup> + 13) - 3x (x + 1) = 0</p> <p>or, 2(x + 1) (x<sup>2</sup> - x + 1) - 3x (x + 1) = 0</p> <p>or, (x + 1)[2x<sup>2</sup> - 2x + 2 - 3x] = 0</p> <p>or, (x + 1) (2x<sup>2</sup> - 5x + 2) = 0</p> <p>or, (x + 1) (2x<sup>2</sup> - 4x - x + 2) = 0</p> <p>or, (x + 1) [2x(x - 2) - 1(x - 2)] = 0</p> <p>or, (x + 1) (x - 2) (2x - 1) = 0</p> <p>Either, x + 1 = 0 &there4;x = -1</p> <p>Or, x - 2 = 0 &there4;x = 2</p> <p>Or, 2x - 1 = 0 &there4; x = \(\frac 12\)</p> <p>&there4; x = -1, 2 , \(\frac12\) <sub>Ans</sub></p> <p></p>

Videos

Composite functions and their domains
Synthetic Division
Evaluating composite functions
Solving Polynomial Equations by Factoring
Composition of Functions
Introduction to Function Inverses
Factoring 4th Degree Polynomials with Synthetic Division
The Factor Theorem and The Remainder Theorem
Our National Heritages

Our National Heritages

Wealth is of two types. One is private wealth that is owned by an individual like TV, house, gold etc. Only the owner has the rights to use them. Others cannot use them without the owner's permission. The other type of wealth is national wealth. The country's temples, monasteries, public taps, buildings, etc. are the examples of national wealth. The airports and roads of the country can be used by all. Police provide security to all the people. Schools, colleges provide education to all the people without any discrimination. Hospitals are built to take care of the health of the public. The National Museums, National Parks, Durbar Squares are the places which come under national wealth. Similarly, the temples such as Changunarayan, Pashupatinath, Budhanilkantha are also national wealth. They are the pride and glory of our country.

Nepal is a country gifted by god. There are plenty of natural resources in our country. Mountains, rivers, lands, flora and fauna are the beauty of our country. The Himalayas, with high peaks, puts our head high. The rivers like Koshi and Gandaki are also the gifts of nature.

Nepal is also a historically and religiously famous country. There are said to be the places where sages lived and meditated. They describe the culture and civilization of our country as well as attract explorers to find out new things. Nepal has a large number of forests as well. It was said 'Hariyo Ban Nepal ko Dhan".

All the cultural features and resources which are created, protected and promoted by our ancestor and handed to future generations are called heritages.

The UNESCO has listed several sites of Nepal in the World Heritage Site. The sites are:

  • Pashupatinath Temple
  • Hanumandhoka Durbar Square
  • Patan Durbar Square
  • Bhaktapur Durbar Square
  • Changunarayan temple
  • Lumbini
  • Bouddhanath Temple
  • Swayambhunath Temple
  • Chitwan National Park
  • Sagarmatha National Park

Lesson

Our Tradition Social Norms and Values

Subject

Social Studies and Population Education

Grade

Grade 8

Recent Notes

No recent notes.

Related Notes

No related notes.