Season Change

Earth revolves around the sun in 365 days. Orbit in which earth revolves around is in an ellipse shape. This note has information about the season change.

Summary

Earth revolves around the sun in 365 days. Orbit in which earth revolves around is in an ellipse shape. This note has information about the season change.

Things to Remember

  • Earth revolves around the sun in 365 days. 
  • On June 21st, the rays of the sun lies in tropic of cancer. 
  • On September 23, the rays of the sun exactly lies on the equator. 
  • On March 21st, the rays of the sun again lies on the equator. Day and night has same interval of time.
  • On December 21st, sun of rays directly lies in tropic of Capricorn. So, it is shortest day and longest night.

 

MCQs

No MCQs found.

Subjective Questions

Q1:

Rudy volunteered to stamp hands at the entrance of a museum 8 times this year. The number of visitors each time was:

3 visitors,   1 visitor,   3 visitors,   4 visitors,  4 visitors,   4 visitors,   2 visitors,   3 visitors


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Sum of given terms (\(\sum\)x) =</p> <p>3visitors + 1visitor + 3visitors + 4visitors + 4visitors + 4visitors + 2visitors + 3visitors</p> <p>= 24</p> <p>numbers of terms (n) = 8</p> <p>We have,</p> <p>Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)</p> <p>= \(\frac{24}{8}\)</p> <p>=3</p> <p>Hence, The number of visitors each time was 3</p>

Q2:

Find the mean of the follwoing data.
12, 15, 18, 19, 15, 17, 16, 10, 13, 15


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Now,<br>Sum of a numbers = 12 + 15 + 18 + 19 + 15 + 17 + 16 + 10 + 13 + 15<br>= 150<br>number = 10<br>We know that,<br>or, Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)<br>or,Mean (\(\overline{X}\)) = \(\frac{150}{10}\)<br>\(\therefore\) Mean (\(\overline{X}\)) = 15</p>

Q3:

Find the mean driving speed for 6 different cars on the same highway.

66 mph,  57 mph,  71 mph,  54 mph,  69 mph,  58 mph


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Sum of given terms (\(\sum\)x) = 66 mph + 57 mph + 71 mph + 54 mph + 69 mph + 58 mph = 375</p> <p>numbers of terms (n) = 6</p> <p>We have,</p> <p>Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)</p> <p>= \(\frac{375}{6}\)</p> <p>= 62.5</p> <p>The mean driving speed is 62.5 mph.</p> <p></p>

Q4:

Teacher took 7 math tests in one marking period. What is the mean test score?      

 9,  73,  84,  91,  87,  77,  94


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Sum of given terms (\(\sum\)x) = 89+ 73+ 84+ 91+ 87+ 77+ 94 = 515</p> <p>numbers of terms (n) =7</p> <p>We have,</p> <p>Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)</p> <p>= \(\frac{515}{7}\)</p> <p>= 73.57</p> <p>Hence, The mean test score is 73.57</p>

Q5:

The Shrestha family drove through 4 midwestern states on their summer vacation. Gasoline prices varied from state to state. What is the mean gasoline price?          

       $1.79,  $1.61,  $1.96,  $2.08


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Sum of given terms (\(\sum\)x) = $1.79+ $1.61+ $1.96+ $2.08 = $7.44</p> <p>numbers of terms (n) = 4</p> <p>We have,</p> <p>Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)</p> <p>= \(\frac{7.44}{7}\)</p> <p>= 1.86</p> <p>Hence, The mean gasoline price is $1.86</p>

Q6:

The mean of 3, 7, 10, 15 and x is 12, find he value of x.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Now,<br>Sum of numbers = 3 + 7 + 10 + 15 + x<br>= 35 + x<br>We know that,<br>or, Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)<br>or, \(\frac{12}{1}\)= \(\frac{35 + x}{n}\)<br>or, 60 = 35 + x<br>or, x = 60 - 35<br>or, x = 25<br>\(\therefore\) The value of x is 25.</p>

Q7:

Find the mean swimming time rounded to the nearest tenth:     

2.6 min, 7.2 min, 3.5 min, 9.8 min, 2.5 min


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Sum of given terms (\(\sum\)x) = 2.6 min+ 7.2 min+ 3.5 min+ 9.8 min+ 2.5 min =25.6</p> <p>numbers of terms (n) =5</p> <p>We have,</p> <p>Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)</p> <p>= \(\frac{25.6}{5}\)</p> <p>= 5.12</p> <p>Hence, The mean swimming time to the nearest tenth is 5.12 min.</p>

Q8:

A marathon race was completed by 5 participants in the times given below. What is the mean race time for this marathon?           

2.7 hr,  8.3 hr,  3.5 hr,  5.1 hr,  4.9 hr

 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Sum of given terms (\(\sum\)x) =</p> <p>2.7 hr + 8.3 hr + 3.5 hr + 5.1 hr + 4.9 hr = 24.5hr</p> <p>numbers of terms (n) =5</p> <p>We have,</p> <p>Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)</p> <p>= \(\frac{24.5}{5}\)</p> <p>= 4.9</p> <p>Hence, The mean race time is 4.9 hr</p>

Q9:

The mean of m, m+2, m+4, m+6, and m+8 is 13, find the value of m.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Now,<br>Sum of number =m + m+2 + m+4 + m+6 + m+8<br>= 5m + 20<br>We know that,<br>or, Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)<br>or, \(\frac{13}{1}\) = \(\frac{5m + 20}{5}\)<br>or, 65 = 5m + 20<br>or, 5m = 65 - 20<br>or, 5m = 45<br>or, m = \(\frac{45}{5}\)<br>or, m = 9<br>\(\therefore\) The value of m is 9.<br><br></p>

Q10:

If the mean of y, y+3, y+7, y+10, y+13 and y+15 is 18, find the value of y.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <p>Now,<br>Sum of a numbers =y + y+3 + y+7 + y+10 + y+13 + y+15<br>= 6y + 48<br>We know that,<br>or, Mean (\(\overline{X}\)) = \(\frac{\sum{x}}{n}\)<br>or, 18 = \(\frac{6y + 48}{6}\)<br>or, 108 = 6y + 48<br>or, 108 - 48 = 6y<br>or, 6y = 60<br>or, y = \(\frac{60}{6}\)<br>or, y = 10<br>\(\therefore\) The value of y is 10.<br><br><br></p>

Q11:

Find the mean of the following data.

x 5 10 15 20 25
f 2 6 10 5 2

Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="65"><tbody><tr><td>x</td> <td>f</td> <td>fx</td> </tr><tr><td>5</td> <td>2</td> <td>10</td> </tr><tr><td>10</td> <td>6</td> <td>60</td> </tr><tr><td>15</td> <td>10</td> <td>150</td> </tr><tr><td>20</td> <td>5</td> <td>100</td> </tr><tr><td>25</td> <td>2</td> <td>50</td> </tr><tr><td>Total</td> <td>25</td> <td>370</td> </tr></tbody></table><p>Now,<br>or, \(\overline{X}\) = \(\frac{\sum{x}}{n}\)<br>or, \(\overline{X}\) = \(\frac{370}{25}\)<br>\(\therefore\) \(\overline{X}\) = 14.8</p>

Q12:

Find the mean of the following continuous data.

Class Interval 0 -6  6 -12  12 - 18  18 - 24  24 - 30
Frequency  2 4 10 6 2

Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="460"><tbody><tr><td>Class Interval</td> <td>frequency</td> <td>Mid-Value</td> <td>F.x</td> </tr><tr><td>0 - 6</td> <td>32</td> <td>3</td> <td>96</td> </tr><tr><td>6 - 12</td> <td>4</td> <td>9</td> <td>36</td> </tr><tr><td>12 - 18</td> <td>10</td> <td>15</td> <td>150</td> </tr><tr><td>18 - 24</td> <td>6</td> <td>21</td> <td>126</td> </tr><tr><td>24 - 30</td> <td>2</td> <td>27</td> <td>54</td> </tr><tr><td></td> <td>N = 24</td> <td></td> <td>\(\sum{fx}\) = 372</td> </tr></tbody></table><p>We know that,<br>or, \(\overline{X}\) = \(\frac{\sum{fx}}{N}\)<br>or, \(\overline{X}\) = \(\frac{372}{24}\)<br>\(\therefore\)\(\overline{X}\) =15.5</p>

Q13:

The mean of the given data is 21. Find the value of p.

class interval  0 -8  8 - 16  16 - 24  24 - 32  32 - 40
frequency  5 9 10 p 8

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="519"><tbody><tr><td>class interval</td> <td>x </td> <td>f</td> <td>fx</td> </tr><tr><td>0 - 8</td> <td>4</td> <td>5</td> <td>20</td> </tr><tr><td>8 - 16</td> <td>12</td> <td>9</td> <td>108</td> </tr><tr><td>16 - 24</td> <td>10</td> <td>10</td> <td>200</td> </tr><tr><td>24 - 32</td> <td>28</td> <td>p</td> <td>28 + p</td> </tr><tr><td>32 - 40</td> <td>36</td> <td>8</td> <td>288</td> </tr><tr><td></td> <td></td> <td>N = 32 + p</td> <td>\(\sum{fx}\) = 616 + 28p</td> </tr></tbody></table><p>we know that,<br>or, \(\overline{X}\) = \(\frac{\sum{fx}}{N}\)<br>or, 21= \(\frac{616 + 28p}{32 + p}\)<br>or, 672 + 21p = 616 + 28p<br>or, 672 - 616 = 28p - 21p<br>or, 56 = 7p<br>or, p = \(\frac{56}{7}\)<br>or, p = 8<br>\(\therefore\) The required mean is 8.</p>

Q14:

Find the mean of the following data.

Weight (in kg) 20 24 30 32 35
No. of students 4 6 8 5 2

Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="267"><tbody><tr><td>Weight</td> <td>No. of students</td> <td>fx</td> </tr><tr><td>20</td> <td>4</td> <td>80</td> </tr><tr><td>24</td> <td>6</td> <td>144</td> </tr><tr><td>30</td> <td>8</td> <td>240</td> </tr><tr><td>32</td> <td>5</td> <td>160</td> </tr><tr><td>35</td> <td>3</td> <td>70</td> </tr><tr><td></td> <td>N = 26</td> <td>\(\sum{fx}\) = 694</td> </tr></tbody></table><p>We know that,<br>or, \(\overline{X}\) = \(\frac{\sum{fx}}{N}\)<br>or, \(\overline{X}\) = \(\frac{694}{26}\)<br>\(\therefore\) \(\overline{X}\) = 26.69 kg<br><br><br><br></p>

Q15:

Find the mean of the following continuous data.

marks obtained 

10 -20 

20 - 30 

30 - 40 

40 - 50 

50 - 60

No. of students

10 

2


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="316"><tbody><tr><td> <p>Marks</p> </td> <td> <p>Students</p> </td> <td> <p>mid-value</p> </td> <td> <p>fx</p> </td> </tr><tr><td> <p>10 - 20</p> </td> <td> <p>4</p> </td> <td> <p>15</p> </td> <td> <p>60</p> </td> </tr><tr><td> <p>20 - 30</p> </td> <td> <p>6</p> </td> <td> <p>25</p> </td> <td> <p>150</p> </td> </tr><tr><td> <p>30 - 40</p> </td> <td> <p>10</p> </td> <td> <p>35</p> </td> <td> <p>350</p> </td> </tr><tr><td> <p>40 - 50</p> </td> <td> <p>3</p> </td> <td> <p>45</p> </td> <td> <p>135</p> </td> </tr><tr><td> <p>50 - 60</p> </td> <td> <p>2</p> </td> <td> <p>55</p> </td> <td> <p>110</p> </td> </tr><tr><td></td> <td> <p>N = 25</p> </td> <td></td> <td> <p>\(\sum{fx}\) = 805</p> </td> </tr></tbody></table><p>We know that,<br> or, \(\overline{X}\) = \(\frac{\sum{fx}}{N}\)<br> or, \(\overline{X}\) = \(\frac{372}{25}\)<br> \(\therefore\) \(\overline{X}\) =14.88</p>

Q16:

Find the mean of the following data.

Height (in cm)

58

60

62

64

66

68

No. of plants

12

14

20

13

8

5


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="257"><tbody><tr><td> <p>Height</p> </td> <td> <p>No. of plants</p> </td> <td> <p>fx</p> </td> </tr><tr><td> <p>58</p> </td> <td> <p>12</p> </td> <td> <p>696</p> </td> </tr><tr><td> <p>60</p> </td> <td> <p>14</p> </td> <td> <p>840</p> </td> </tr><tr><td> <p>62</p> </td> <td> <p>20</p> </td> <td> <p>1240</p> </td> </tr><tr><td> <p>64</p> </td> <td> <p>13</p> </td> <td> <p>832</p> </td> </tr><tr><td> <p>66</p> </td> <td> <p>8</p> </td> <td> <p>528</p> </td> </tr><tr><td> <p>68</p> </td> <td> <p>5</p> </td> <td> <p>340</p> </td> </tr><tr><td></td> <td> <p>N = 72</p> </td> <td> <p>\(\sum{fx}\) = 4478</p> </td> </tr></tbody></table><p>We know that,<br> or, \(\overline{X}\) = \(\frac{\sum{fx}}{N}\)<br> or, \(\overline{X}\) = \(\frac{4478}{72}\)<br> \(\therefore\) \(\overline{X}\) = 62.19 cm</p>

Q17:

Find the mean of the following continuous data.

Marks

5 - 10 

10 - 15

15 - 20

20 - 25 

25 - 30

No. of students

2

4

8

6

4


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Solution:</p> <table width="343"><tbody><tr><td> <p>Marks</p> </td> <td> <p>Students</p> </td> <td> <p>Mid-Value</p> </td> <td> <p>fx</p> </td> </tr><tr><td> <p>5 - 10</p> </td> <td> <p>2</p> </td> <td> <p>7.5</p> </td> <td> <p>15</p> </td> </tr><tr><td> <p>10 - 15</p> </td> <td> <p>4</p> </td> <td> <p>12.5</p> </td> <td> <p>50</p> </td> </tr><tr><td> <p>15 - 20</p> </td> <td> <p>8</p> </td> <td> <p>17.5</p> </td> <td> <p>140</p> </td> </tr><tr><td> <p>20 - 25</p> </td> <td> <p>6</p> </td> <td> <p>22.5</p> </td> <td> <p>135</p> </td> </tr><tr><td> <p>25 - 30</p> </td> <td> <p>4</p> </td> <td> <p>27.5</p> </td> <td> <p>110</p> </td> </tr><tr><td></td> <td> <p>N = 24</p> </td> <td></td> <td> <p>\(\sum{fx}\) = 450</p> </td> </tr></tbody></table><p>We know that,<br> or, \(\overline{X}\) = \(\frac{\sum{fx}}{N}\)<br> or, \(\overline{X}\) = \(\frac{450}{24}\)<br> \(\therefore\) \(\overline{X}\) = 18.75</p>

Videos

No videos found.

Season Change

Season Change

Earth revolves around the sun in 365 days. Orbit in which earth revolves around is in an ellipse shape. So, sometimes earth goes near and sometimes far to the sun. When the earth moves nearer to the sun-earth becomes hotter and when the earth moves farther to the sun-earth becomes cooler. Due to this phenomena, earth experiences the different season. There are four seasons. They are:

  1. Summer: On December 21st, sun rays directly lie in the tropic of Capricorn. So, it is the shortest day and longest night. On those days northern hemisphere experiences, coldness and southern hemisphere experience hotness. On those days northern hemisphere experiences winter season whereas southern hemisphere experiences summer season.

  2. Winter: On June 21st, the rays of the sun lies in the tropic of cancer. So, it is the shortest night and longest day. Northern hemisphere faces nearer towards the sun. So northern hemisphere experiences the longer day and shorter nights. On these days, northern hemisphere experiences hotness and southern hemisphere experience coldness. On those days, the northern hemisphere experiences summer season whereas southern hemisphere experiences a winter season.

  3. Autumn: On March 21st, the rays of the sun again lie on the equator. Day and night have a same interval of time. So, there will be no extreme hotness or coldness. On those days northern hemisphere experiences, spring season whereas southern hemisphere experiences the autumn season.

  4. Spring: On September 23rd, the rays of the sun exactly lie on the equator. That day both hemisphere experiences equal interval of day and night. So, there will be no extreme hotness or coldness. On those days, northern hemisphere experiences autumn season whereas southern hemisphere experiences spring season.:

Lesson

Our Earth

Subject

Social Studies and Population Education

Grade

Grade 8

Recent Notes

No recent notes.

Related Notes

No related notes.