Simple Machine

Simple machines are those in which effort is applied at a more convenient point in a more convenient direction. This note contains information about various types of simple machine with its example, principal of simple machine.

Summary

Simple machines are those in which effort is applied at a more convenient point in a more convenient direction. This note contains information about various types of simple machine with its example, principal of simple machine.

Things to Remember

  • A simple machine is a device, which makes our work easier by

    1. increasing the force applied
    2. changing the direction of force applied
    3. transferring the force from one place to another
    4. increasing the speed of a force
  • Types of simple machines are:

    1. Lever
    2. Pulley
    3. Wheel and axle
    4. Inclined plane
    5. screw
    6. Wedge
  • The principal of machine is Input work = Output work

MCQs

No MCQs found.

Subjective Questions

Q1:

Compute compound interest on Rs 5000 for 2 years at 12% per annum. 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal(P) = Rs 5000,<br>Rate (R) = 12%<br>Time (T) = 2 years<br>Compound interest (C.I) = ?<br>Now,</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ &amp;= 5000 \left[ \left( 1 + \frac{12}{100}\right)^2 - 1\right]\\ &amp;= 5000[(1.12)^2 -1]\\ &amp;= 5000[1.2544 - 1] \\ &amp;= 5000 \times 0.2544\\ &amp;= Rs \: 1272\: \: _{Ans.}\end{align*}</p>

Q2:

At what rate percent compound interest will Rs 847 in 2 years? 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal (P) = Rs 700<br>Compound interest (A) = Rs 847<br>Time (T) = 2 years<br>Rate of interest (R) = ?</p> <p>\begin{align*} Compound \: amount \: (CA) &amp;= P \left(1 + \frac{R}{100}\right)^T \\ or, 847 &amp;= 700\left(1 + \frac{R}{100}\right)^2 \\ or, \frac{847}{700} &amp;= \left(1 + \frac{R}{100}\right)^2 \\ or, 1.21 &amp;= \left(1 + \frac{R}{100}\right)^2\\ or,(1.1)^2 &amp;= \left(1 + \frac{R}{100}\right)^2 \\ or, 1.1 &amp;= 1 + \frac{R}{100}\\ or, \frac{R}{100} &amp;= 1.1 - 1\\ or, R &amp;= 0.1 \times 100 \\ \therefore R &amp;= 10\% \:\:\:_{Ans.}\end{align*}</p>

Q3:

What is the compound interest on Rs 50,000 for 2 years at 10% per annum payable half yearly.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal(P) = Rs 50,000<br>Time (T) = 2 years<br>Rate (R) = 10%<br>Compound interest (C.I) = ?</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^2T - 1\right]\\ &amp;= 50,000\left[ \left( 1 + \frac{10}{100}\right)^{2 \times 2} - 1\right] \\ &amp;= 50,000 [(1 + 0.05)^4 - 1]\\ &amp;= 50,000 [1.2155 -1] \\ &amp;= 50,000 \times 0.2155 \\ &amp;= Rs \: 10775 \:\: \: _{Ans.} \end{align*}</p>

Q4:

Find the compound Interest on Rs 12000 for 1 year and 6 months at rate 10% per annum?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principle (P) = Rs 12,000<br>Time (T) = 1 year<br>Month(M)=6 month<br>Rate (R) = 10%<br>Compound interest (C.I) = ?</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T \left( 1 + \frac{MR}{1200}\right)- 1\right]\\ &amp;= 12,000 \left[ \left( 1 + \frac{10}{100}\right)^1 \left( 1 + \frac{6 \times 10}{1200}\right) - 1 \right] \\ &amp;= 12,000 [(1.1) (1.05) - 1]\\ &amp;= 12,000\: [1.155 - 1] \\ &amp;= 12,000\times 0.155 \\&amp;= Rs 930\\ \end{align*} \(\therefore Compound \: interest = Rs \: 930 \:\: _{Ans.}\)</p>

Q5:

How much will Rs 25000 amount to 2 years compounded yearly. If the rate of the successive years be 4 % and 5 % respectively.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principle (P) = Rs 25,000<br>Time(T) = 2 years<br>Rate (R<sub>1</sub>) = 4%<br>Rate (R<sub>2</sub>) = 5%<br>Compound Amount (CA) = ?</p> <p>\begin{align*} Compound \: amount \: (CA) &amp;= P \left(1 + \frac{R_1}{100}\right) \left(1 + \frac{R_2}{100}\right)<br>\\ &amp;= 25000\left(1 + \frac{4}{100}\right) \left(1 + \frac{5}{100}\right) \\ &amp;= 2500 \times 1.04 \times 1.05 \\ &amp;= Rs \: 27300 \:\:\: _{Ans.} \end{align*}</p>

Q6:

Find the sum of money on which the compound amount is Rs 5159.68 for 1 year at 8% per annum payable half yearly?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Compound Amount (CA) = Rs 5191.68<br>Time (T) = 1 year<br>Rate (R) = 8%<br>Principal (P) = ?</p> <p>\begin{align*} Compound \: amount \: (CA) &amp;= P \left(1 + \frac{R}{200}\right)^{2T} \\ or, 5191..68 &amp;= P \left(1 + \frac{8}{200}\right)^2\\ or, 5191.68 &amp;= P(1.04)^2\\ or, P &amp;= \frac{5191.68}{1.0816}\\ &amp;= \: Rs \: 4800 \end{align*}</p> <p>\(\therefore\) The principal (P) = Rs \: 4800 \(_{Ans.}\)</p> <p></p>

Q7:

A certain sum of money amount to Rs 1323 in 2 years and to Rs 1389.15 in 3 years. Find the compound rate of interest and the sum.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>First compound amount (CA<sub>1</sub>) = Rs 1323<br>Time (T<sub>1</sub>) = 2 years<br>Second compound amount (CA<sub>2</sub>) = Rs 1389.15<br>Time (T<sub>2</sub>) = 3 years<br>We know that,</p> <p>\begin{align*} CA &amp;= P \left(1 + \frac{R}{100}\right)^T \\ 1323 &amp;= P \left(1 + \frac{R}{100}\right)^2 \: \: \: \: \: ........ (1)\\ or, 1389.15 &amp;= P \left(1 + \frac{R}{100}\right)^3 \:\:\:\:\: ........(2) \\ \end{align*}</p> <p>\(\text{The equation (2 )is divided by equation (1) } \)</p> <p>\begin{align*} \frac{1389.15}{1323} &amp;= \frac{P \left(1 + \frac{R}{100}\right)^3 }{P \left(1 + \frac{R}{100}\right)^2 }\\ or, 1.05 &amp;= 1 + \frac{R}{100}\\ or, \frac{R}{100} &amp;= 1.05 - 1\\ or, R &amp;= 0.05 \times 100\%\\ R &amp;= 5\% \end{align*}</p> <p>\(\text{Putting Value of R in}\:\: eq^n (1)\)</p> <p>\begin{align*}P \left(1 + \frac{R}{100}\right)^2 &amp;= 1323 \\ or, P \left(1 + \frac{5}{100}\right)^2 &amp;=1323 \\ or, P \times 1.1025 &amp;= 1323\\ P &amp;= \frac{1323}{1.1025}\\ \therefore P &amp;= 1200\\ \end{align*} \(\therefore Principle = Rs \: 1200 \:\: and \: rate = 5\% \)</p>

Q8:

According to the system of compound interest, a sum of money in 2 years amount to Rs 7260 and is 3 years amount to Rs 7986. Find the rate of interest.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>First compound interest (CA<sub>1</sub>) = Rs 7260<br>Time (T<sub>1</sub>) = 2 years<br>Second compound interest (CA<sub>2</sub>) = Rs 7986<br>Time (T<sub>2</sub>) = 3 years<br>We know that,</p> <p>\begin{align*} Compound \: amount \: (CA) &amp;= P \left(1 + \frac{R}{100}\right)^T \\ 7260 &amp;= P\left( 1 + \frac{R}{100}\right)^2 \: \: \: \: ....... (1) \\ 7986 &amp;= P\left( 1 + \frac{R}{100}\right)^3 \:\:\:\: ....... (2)\\ \end{align*}</p> <p>\( \text{The equation (2) is divide d by equation (1)}\)</p> <p>\begin{align*} \frac{7986}{7260} &amp;= \frac{P\left( 1 + \frac{R}{100}\right)^3 }{P\left( 1 + \frac{R}{100}\right)^2}\\ or, 1.1 &amp;= 1 + \frac{R}{100}\\ or, \frac{R}{100} &amp;= 1.1 - 1 \\ or, \frac{R}{100} &amp;= 1.1 -1 \\ or, R &amp;= 0.1 \times 100 \\ R &amp;= 10\% \end{align*}</p> <p></p>

Q9:

The sum of simple interest and compound interest after 2 years is Rs 202.50 and the rate of interest is 10% per annum. Find the principle.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Let, Principle (P) = Rs x<br>Time (T) = 2 years<br>Rate (R) = 5%</p> <p>\begin{align*} Simple \: Interest \: (S.I) &amp;= \frac{P\:T\:R}{100} \\ &amp;= \frac{x \times 2 \times 5}{100} \\ &amp;= x \times 0.1 \end{align*}</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ &amp;= x \left[ \left( 1 + \frac{5}{100}\right)^2 - 1\right] \\ &amp;= x [(1.05)^2 - 1] \\ &amp;= x[1.1025 - 1]\\ &amp;= x \times 0.1025 \end{align*}</p> <p>From question,</p> <p>\begin{align*} S.I + C.I &amp;= Rs \: 202.50 \\ x \times 0.1 + x \times 0.1025 &amp;= Rs \: 202.50\\ or, x(0.1 + 0.1025) &amp;= Rs \: 202.50\\ x &amp;= \frac{202.50}{0.2025} \\ \therefore x &amp;= Rs \: 10000 \end{align*}</p> <p>\(\therefore\) Principle (P) = Rs 10000 \(_{Ans.}\)</p>

Q10:

The compound interest of a sum of money in 1 year and 2 years are Rs 450 and 945 respectively. Find the rate of interest compounded yearly and sum.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>First compound interest (CI<sub>1</sub>) = Rs 450<br>Time (T<sub>1</sub>) = 1 year<br>Second compound interest (C<sub>2</sub>) = Rs 945<br>Time (T<sub>2</sub>) = 2 years<br>Let Principal = P and rate = R<br>We know that,</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ C.I_1&amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right] \\ 450 &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^1 - 1\right] \: \: ....... (1) \\ C.I_2&amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right] \\ 945 &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^2 - 1\right] \:\:\: ....... (2)\end{align*}</p> <p>Equation (2) is divided by equation (1)</p> <p>\begin{align*} \frac{ P \left[ \left( 1 + \frac{R}{100}\right)^2 - 1\right]}{ P \left[ \left( 1 + \frac{R}{100}\right)^1 - 1\right]} &amp;= \frac{945}{450}\\ or, \frac{\left[ \left( 1 + \frac{R}{100}\right) + 1\right] \left[ \left( 1 + \frac{R}{100}\right) - 1\right]}{\left[ \left( 1 + \frac{R}{100}\right)^1 - 1\right]} &amp;= 2.1 \\ or, 2 + \frac{10}{100} &amp;= 2.1\\ or, \frac{R}{100} &amp;= 2.1 - 2 \\ or, R &amp;= 0.1 \times 100\% \\ \therefore R &amp;= 10\%\end{align*}</p> <p>Putting the value of R in equation (1)</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right) - 1\right] \\ or, P \times \frac{10}{100} &amp;= 450\\ or, P &amp;= 450 \times 10\\ P &amp;= 4500 \\ \\ \therefore The \: sum = 4500, rate (R) = 10\% \end{align*}</p> <p></p>

Q11:

A person took a loan of Rs 46,875. If the rate of the compound interest is 4 paisa per rupee per year, in how many years will the compound interest be  Rs 5,853.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal (P) = Rs. 46875<br>Compound interest (C.I.) = Rs. 5853<br>In 1-year compound interest of Rs 1 is 4 paisa.<br>In 1-year compound interest of Rs 100 is <strong>4 &times; 100</strong> paisa. <br>In 1-year compound interest of Rs 100 is Rs. \( \frac{4 \times 100}{100} \) = Rs 4</p> <p>Interest rate (R) = 4%<br>Time (T) =?<br>We know that,</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ 5853 &amp;= 46875 \left[ \left( 1 + \frac{4}{100}\right)^T - 1\right] \\ \frac{5853}{46875} &amp;=\left( 1 + \frac{4}{100}\right)^T - 1\\ or, 0.124864 + 1 &amp;=(1.04)^T\\ or, (1.04)^3 &amp;= (1.04)^T \\ \therefore Time &amp;= 3 \: years \end{align*}</p>

Q12:

The compound amount of a sum of money is 2 years is Rs 8820 and in 3 years is Rs 9261. Find the sum and rate of interest.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>First compound amount (CA<sub>1</sub>) = Rs 8820<br>Time (T<sub>1</sub>) = 2 years<br>Second compounded amount (CA<sub>2</sub>) = Rs 9261<br>Time (T<sub>2</sub>) = 3 years<br>Let principal = P , Rate = R</p> <p>\begin{align*} Compound \: amount \: (CA) &amp;= P \left(1 + \frac{R}{100}\right)^T \\ 8820 &amp;= P \left(1 + \frac{R}{100}\right)^2\:\:\: ...... (1)\\ 9261 &amp;= P \left(1 + \frac{R}{100}\right)^3 \:\:\: ..... (2) \end{align*}</p> <p>Equation (2) is divided by equation (1)</p> <p>\begin{align*} \frac{P \left(1 + \frac{R}{100}\right)^3}{ P \left(1 + \frac{R}{100}\right)^2} &amp;= \frac{9261}{8820} \\ or, 1 + \frac{R}{100} &amp;= 1.05\\ or, \frac{R}{100} &amp;= 1.05 - 1 \\ or, R &amp;= 0.05 \times 100\% \\ R &amp;= 5\% \end{align*}</p> <p>Putting value of R in equation (1)</p> <p>\begin{align*} P \left(1 + \frac{R}{100}\right)^T &amp;= 8820 \\ or, P \left(1 + \frac{5}{100}\right) &amp;= 8820\\ or, P \times (1.05)^2 &amp;= 8820 \\ or, P \times 1.1025 &amp;= 8820\\or,P &amp;= \frac{8820}{1.1025}\\ P &amp;= Rs \: 8000 \end{align*}</p> <p>\(\therefore \) The principal = Rs 8000 and Rate = 5% \(_{Ans.} \)</p>

Q13:

The compound interest on a sum of money in 3 years at 20% per annum will Rs 384 more than simple interest. Find the sum.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Time (T) = 3 years<br>Rate (R) = 20%<br>Principal (P) = ?<br>Compound Interest (C.I) - Simple Interest (S.I) = Rs. 384<br>We know that,</p> <p>\begin{align*} S.I &amp;= \frac{P \: T \: R}{100}\\ &amp;= \frac{P \times 3 \times 20}{100}\\ &amp;= P \times 0.6 \end{align*}</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ &amp;= P \left[ \left( 1 + \frac{20}{100}\right)^3 - 1\right]\\ &amp;=P\: [(1.2)^3 - 1]\\ &amp;= P[1.728 - 1]\\ &amp;= P \times 0.728 \end{align*}</p> <p>From question,</p> <p>\begin{align*} C.I - S.I &amp;= Rs\: 384\\ P \times 0.728 - P \times 0.6 &amp;= Rs\: 384 \\P\:(0.728 - 0.6)&amp;= 384\\ or, P \times 0.128 &amp;= 384\\ or, P &amp;= \frac{384}{0.128}\\ \therefore P &amp;= Rs\:3000 \:\:\:\: _{Ans.} \end{align*}</p>

Q14:

Prakash lend altogether Rs 6000 to Anima and Eline for 2 years. Anima agree to pay simple  interest at 10% p.a. and Eline agree to pay compound interest at the rate of 8%. If Eline paid Rs 50 more than Amina as the interest. Find how much did he lent to each.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>For Anima,<br>Let, Principal (P) = Rs x,<br>Time (T) = 2 years<br>Rate (R) = 10%</p> <p>\begin{align*} Simple \: Interest \: (S.I) &amp;= \frac{P \: T \: R}{100} \\ &amp;= \frac{x \times2 \times10 }{100}\\ &amp;= x \times 0.2 \end{align*}</p> <p>For Eline,<br>Principal (P) = Rs 6000 - x<br>Time (T) = 2 years<br>Rate (R) = 5%</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ &amp;= (6000 - x)\left[ \left( 1 + \frac{5}{100}\right)^2 - 1\right]\\ &amp;= (6000 - x ) [(1.08)^2 - 1] \\ &amp;=Rs \: 998.4 \times Rs \: 0.1664x \end{align*}</p> <p>From question,</p> <p>\begin{align*} C.I. - S.I &amp;= Rs \: 50\\ or, 998.4 - x \times 0.1664 - x \times 0.2 &amp;=50\\ or, 998.4 - x \times 0.3664&amp;=50\\ or, -x \times 0.3664&amp;=50 - 998.4\\ or, x &amp;= \frac{-948.4}{-0.3664}\\ &amp;= Rs\: 2588.43\end{align*}</p> <p>For Anima sum = Rs 2588.43<br>For Eline sum = (6000 - 2588.43) = Rs 3411.57</p>

Q15:

Sita borrowed Rs 170000 from Radha at the rate of 21% per annum, at the end of 1 year 6 months. 
(i) How much simple interest will she have to pay?
(ii) How much compound interest will she have to pay?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal (P) = Rs 170000<br>Rate (R) = 21%<br>Time (T) = 1 year 6 month = \( 1 + \frac{6}{12} = \frac{3}{2} \: years \)<br><br></p> <p>\begin{align*} Simple \: Interest \: (S.I) &amp;= \frac{P \: T \: R}{100} \\ &amp;= \frac{170000\times3 \times21 }{100\times 2}\\ &amp;= Rs\: 53550 \:\:\:\:_{Ans.} \end{align*}</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ C.I &amp;= 170000 \left[ \left( 1 + \frac{21}{100}\right)^{\frac{3}{2}} - 1\right] \\&amp;= 170000 \left[ \left( \frac{121}{100}\right)^{\frac{3}{2}} - 1\right]\\ &amp;= 170000\left[ \left( \frac{11}{10}\right)^{\frac{2 \times3}{2}} - 1\right] \\&amp;= 170000[(1.1)^3 - 1]\\ &amp;=170000[1.331 - 1]\\ &amp;= Rs\: 170000 \times 0.331\\ &amp;= Rs\: 56270 \:\:\:_{Ans.} \end{align*}</p> <p></p>

Q16:

What is difference between the compound interest and simple interest on Rs 5120 for 3 years at 12.5% per annum?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principle (P) = Rs 5120<br>Time (T) = 3 years<br>Rate (R) = 12.5%</p> <p><br>\begin{align*} Simple \: Interest \: (S.I) &amp;= \frac{P \: T \: R}{100} \\ &amp;= \frac{5120 \times3 \times12.5 }{100} \\ &amp;= Rs\:1920\end{align*}</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ &amp;= 5120 \left[ \left( 1 + \frac{12.5}{100}\right)^3 - 1\right]\\ &amp;=5120 [1.4238281 - 1] \\ &amp;= 5120 \times 0.4238281 \\&amp;= Rs\: 2170 \end{align*}</p> <p>\begin{align*}Difference &amp;= C.I - S.I\\ &amp;= 2170-1920\\ &amp;= Rs\: 250 \end{align*}</p>

Q17:

Ram borrowed Rs 4250 from Shyam at the rate of 12% per annum at the and of one year.
(i) How much simple interest will Ram have to pay?
(ii) How much interest compounded half-yearly will Ram has to pay?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal (P) = Rs 4250<br>Rate (R) = 12%<br>Time (T) = 1 year</p> <p>\begin{align*} Simple \: Interest \: (S.I) &amp;= \frac{P \: T \: R}{100} \\ &amp;= \frac{4250 \times 1 \times12 }{100}\\ &amp;=Rs\: 510 \end{align*}</p> <p>For half yearly,</p> <p>\begin{align*} C.I &amp;= P \left[ \left( 1 + \frac{R}{200}\right)^{2T} - 1\right]\\ &amp;= 4250\left[ \left( 1 + \frac{12}{200}\right)^{2\times 1} - 1\right] \\ &amp;= 4250[(1.06)^2 -1]\\ &amp;= 4250 [1.1236-1]\\ &amp;=4250 \times 0.1236\\ &amp;= Rs \:525.30 \:\:_{Ans}\end{align*}</p>

Q18:

What will be the compound interest on Rs 5000 for 2 years at the rate of 20% compound per annum? At what time the same interest on the same sum at the same rate of simple interest?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal (P) = Rs 5000<br>Time (T) = 2 years<br>Rate (R) = 20%</p> <p>\begin{align*} Compound\:Interest\:(C.I) &amp;= P \left[ \left( 1 + \frac{R}{100}\right)^T - 1\right]\\ &amp;= 5000\left[ \left( 1 + \frac{20}{100}\right)^2 - 1\right]\\ &amp;= 5000[(1.2)^2 - 1]\\ &amp;= 5000 \times 0.44 \\ &amp;= Rs\:2200 \end{align*}</p> <p>Let, Simple interest (S.I) = Rs 2200<br>Principle (P) = Rs 5000<br>Rate (R) = 20%<br>Time (T) = ?</p> <p>\begin{align*} T &amp;= \frac{I \times 100}{PR}\\ &amp;= \frac{2200 \times 100}{5000 \times 20}\\ &amp;= 2.2 \: years \end{align*}</p> <p></p>

Q19:

Mohan deposited Rs 5000 at 8% p.a compound interest in the bank. Find the difference between the amounts compounded yearly and half yearly in two years.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>Principal (P) = Rs 5000<br>Rate (R) = 8%<br>Time (T) = 2 years<br>Compound amount (CA) = ?</p> <p><br>\begin{align*} For\: yearly,\\ CA &amp;= P \left(1 + \frac{R}{100}\right)^T \\ &amp;= 5000 \left(1 + \frac{8}{100}\right)^2\\ &amp;=5000 \times \frac{108}{100} \times \frac{108}{100} \\ &amp;= Rs \: 5832 \:\:\: _{Ans.} \end{align*}</p> <p>\begin{align*} For\: half \:yearly \: \\CA &amp;= P \left(1 + \frac{R}{200}\right)^{2T} \\ &amp;= 5000 \left(1 + \frac{8}{200}\right)^{2\times 2}\\ &amp;= 5000 (1.04)^4\\ &amp;= 5849.29 \end{align*}</p> <p>\begin{align*} Difference \: between &amp;= 5849.29 - 5832\\ &amp;= Rs \:17.29 \:\:\: _{Ans.} \end{align*}</p> <p></p> <p></p>

Q20:

Divide Rs 25200 into two parts such that the amount of are part in 2 years is the same as the amount of second part in 3 years the rate of compound interest being 10% per annum in both the cases.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p><strong>Solution:</strong></p> <p>For first part<br>First part (P<sub>1</sub>) = Rs 25200 - x<br>Time (T<sub>1</sub>) = 2 years<br>Rate (R<sub>1</sub>) = 10%</p> <p>For second part<br>Second principal (P<sub>2</sub>) = Rs x<br>Time (T<sub>2</sub>) = 3 years<br>Rate (R<sub>3</sub>) = `10%</p> <p>\begin{align*} Compound \: amount \: (CA_1) &amp;= P \left(1 + \frac{R}{100}\right)^T \\ &amp;=(25200 - x) \left(1 + \frac{10}{100}\right)^2\\ &amp;= (25200 - x) (1.1)^2\\ &amp;= (25200-x) \times 1.21 \end{align*}</p> <p>\begin{align*} Compound \: amount \: (CA_2) &amp;= P \left(1 + \frac{R}{100}\right)^T \\ &amp;= x \left(1 + \frac{10}{100}\right)^3\\ &amp;=x (1.1)^3 \\ &amp;= x \times 1.331 \end{align*}</p> <p>From Question,</p> <p>\begin{align*} CA_1 &amp;=CA_2 \\ (25200-x) \times 1.21 &amp;= x\times 1.331 \\ or, 30492 - 1.21x &amp;= x \times 1.331\\ or, 1.331x+1.21x&amp;=30492\\ or, 2.541x &amp;= 30492\\ x&amp;= \frac{30492}{2.541}\\ \therefore x&amp;=12000 \end{align*}</p> <p>\begin{align*} 1^{st} \: principle &amp;= 25200 -x\\&amp;= 25200-12000\\&amp;= Rs\:13200 \:\:\:_{Ans.} \end{align*}</p> <p>\(2^{nd }\: principal = x= Rs 12000 \:\:\:_{Ans.}\)</p> <p></p> <p></p>

Videos

Introduction to compound interest
Simple Machine

Simple Machine

We use different kinds of machines and tools in our daily life. Simple machines are those instruments in which effort is applied at a more convenient point in a more convenient direction. The work done on a machine is called input and the work done by the machine is called output. Input is the product of force and distance through which force is applied and output is the product of load and distance through which load is moved. A simple machine is a device, which makes our work easier by

  1. increasing the force applied
  2. changing the direction of force applied
  3. transferring the force from one place to another
  4. increasing the speed of a force

All machines work on the principle that when the effort is smaller than the load, it has to move a greater distance than the load in order to lift it up. There are six types of simple machines, they are:

  1. Lever
  2. Pulley
  3. Wheel and axle
  4. Inclined plane
  5. Screw
  6. Wedge

Principle of a simple machine

The principle of machine is Input work = Output work

Or, E x E. d = L x L. d

Where, E = Effort

E. d = Effort distance

L = load

L. d = load distance

Lesson

Simple Machine

Subject

Science

Grade

Grade 8

Recent Notes

No recent notes.

Related Notes

No related notes.