Signs of Trigonometric Ratios

Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).

Summary

Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).

Things to Remember

  1. If n is even, there will be no change in the trigonometric ratios.
    i.e. sin(n × 90° ± \(\theta\))⇒ sin \(\theta\)
    cos(n × 90° ± \(\theta\))⇒ cos \(\theta\), etc.
  2. If n is odd, then the trigonometric ratios change as follows:
    sin(n × 90° ± \(\theta\))⇒ cos \(\theta\)
    cos(n × 90° ± \(\theta\))⇒ sin \(\theta\)
    tan(n × 90° ± \(\theta\))⇒ cot \(\theta\)
    cosec(n × 90° ± \(\theta\))⇒sec \(\theta\)
    sec(n × 90° ± \(\theta\))⇒ cosec \(\theta\)
    cot(n × 90° ± \(\theta\))⇒ tan \(\theta\)
  3. The sign of the trigonometric ratio of the angle(n × 90° ± \(\theta\)) is determined by taking into consideration that in which quadrant that angle(n × 90° ± \(\theta\)) lies.

MCQs

No MCQs found.

Subjective Questions

No subjective questions found.

Videos

No videos found.

Signs of Trigonometric Ratios

Signs of Trigonometric Ratios

 Trigonometric Ratios of any angle Trigonometric Ratios of any angle

Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).

1. If n is even, there will be no change in the trigonometric ratios.
i.e. sin (n × 90° ± \(\theta\)) ⇒ sin \(\theta\)
cos (n × 90° ± \(\theta\)) ⇒ cos \(\theta\), etc.

2. If n is odd, then the trigonometric ratios change as follows:
sin (n × 90° ± \(\theta\)) ⇒ cos \(\theta\)
cos (n × 90° ± \(\theta\)) ⇒ sin \(\theta\)
tan (n × 90° ± \(\theta\)) ⇒ cot \(\theta\)
cosec (n × 90° ± \(\theta\)) ⇒sec \(\theta\)
sec (n × 90° ± \(\theta\)) ⇒ cosec \(\theta\)
cot (n × 90° ± \(\theta\)) ⇒ tan \(\theta\)

3. The sign of the trigonometric ratio of the angle (n × 90° ± \(\theta\)) is determined by taking into consideration that in which quadrant that angle (n × 90° ± \(\theta\)) lies.

Ratios of 120°

sin 120° = sin (2 × 90° - 60°) = sin 60° = \(\frac{\sqrt{3}}{2}\)

cos 120° = cos (1 × 90° +30°) = -sin 30° = - \(\frac{1}{2}\)

tan 120° = tan (2 × 90° - 60°) = -tan 60° = - \(\sqrt{3}\)

Ratios of 135°

sin 135° = sin (1 × 90° + 45°) = cos 45 = \(\frac{1}{\sqrt{2}}\)

cos 135° = cos (2 × 90° - 45°) = -cos 45 = -\(\frac{1}{\sqrt{2}}\)

tan 135° = tan (1 × 90° + 45°) = -cot 45 = -1

Ratios of 150°

sin 150° = sin (2 × 90° - 30°) = sin 30° = \(\frac{1}{2}\)

cos 150° = cos (1 × 90° +60°) = -sin 60° = -\(\frac{\sqrt{3}}{2}\)

tan 150° = tan (2 × 90° - 30°) = -tan 30° = -\(\frac{1}{\sqrt{3}}\)

Lesson

Trigonometry

Subject

Optional Mathematics

Grade

Grade 9

Recent Notes

No recent notes.

Related Notes

No related notes.