Signs of Trigonometric Ratios
Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).
Summary
Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).
Things to Remember
- If n is even, there will be no change in the trigonometric ratios.
i.e. sin(n × 90° ± \(\theta\))⇒ sin \(\theta\)
cos(n × 90° ± \(\theta\))⇒ cos \(\theta\), etc. - If n is odd, then the trigonometric ratios change as follows:
sin(n × 90° ± \(\theta\))⇒ cos \(\theta\)
cos(n × 90° ± \(\theta\))⇒ sin \(\theta\)
tan(n × 90° ± \(\theta\))⇒ cot \(\theta\)
cosec(n × 90° ± \(\theta\))⇒sec \(\theta\)
sec(n × 90° ± \(\theta\))⇒ cosec \(\theta\)
cot(n × 90° ± \(\theta\))⇒ tan \(\theta\) - The sign of the trigonometric ratio of the angle(n × 90° ± \(\theta\)) is determined by taking into consideration that in which quadrant that angle(n × 90° ± \(\theta\)) lies.
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Signs of Trigonometric Ratios
Trigonometric Ratios of any angle
Any allied angle can be in the form (n × 90° ± \(\theta\)) where n is an integer. We can change the trigonometric ratios of the angle (n × 90° ± \(\theta\)) into the trigonometric ratio of an angle \(\theta\).
1. If n is even, there will be no change in the trigonometric ratios.
i.e. sin (n × 90° ± \(\theta\)) ⇒ sin \(\theta\)
cos (n × 90° ± \(\theta\)) ⇒ cos \(\theta\), etc.
2. If n is odd, then the trigonometric ratios change as follows:
sin (n × 90° ± \(\theta\)) ⇒ cos \(\theta\)
cos (n × 90° ± \(\theta\)) ⇒ sin \(\theta\)
tan (n × 90° ± \(\theta\)) ⇒ cot \(\theta\)
cosec (n × 90° ± \(\theta\)) ⇒sec \(\theta\)
sec (n × 90° ± \(\theta\)) ⇒ cosec \(\theta\)
cot (n × 90° ± \(\theta\)) ⇒ tan \(\theta\)
3. The sign of the trigonometric ratio of the angle (n × 90° ± \(\theta\)) is determined by taking into consideration that in which quadrant that angle (n × 90° ± \(\theta\)) lies.
Ratios of 120°
sin 120° = sin (2 × 90° - 60°) = sin 60° = \(\frac{\sqrt{3}}{2}\)
cos 120° = cos (1 × 90° +30°) = -sin 30° = - \(\frac{1}{2}\)
tan 120° = tan (2 × 90° - 60°) = -tan 60° = - \(\sqrt{3}\)
Ratios of 135°
sin 135° = sin (1 × 90° + 45°) = cos 45 = \(\frac{1}{\sqrt{2}}\)
cos 135° = cos (2 × 90° - 45°) = -cos 45 = -\(\frac{1}{\sqrt{2}}\)
tan 135° = tan (1 × 90° + 45°) = -cot 45 = -1
Ratios of 150°
sin 150° = sin (2 × 90° - 30°) = sin 30° = \(\frac{1}{2}\)
cos 150° = cos (1 × 90° +60°) = -sin 60° = -\(\frac{\sqrt{3}}{2}\)
tan 150° = tan (2 × 90° - 30°) = -tan 30° = -\(\frac{1}{\sqrt{3}}\)
Lesson
Trigonometry
Subject
Optional Mathematics
Grade
Grade 9
Recent Notes
No recent notes.
Related Notes
No related notes.