Subjective Questions
Q1:
Find the mean deviation from mean.
Daily wages (Rs) 90, 115, 100, 125, 110
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of mean deviation from mean</p> <table width="293"><tbody><tr><td><strong>Wages (Rs) X</strong></td> <td><strong>D = X - \(\overline X\)</strong></td> <td><strong>\(\begin {vmatrix}D\\ \end {vmatrix}\)</strong></td> </tr><tr><td>90</td> <td>-18</td> <td>18</td> </tr><tr><td>100</td> <td>-8</td> <td>8</td> </tr><tr><td>110</td> <td>2</td> <td>2</td> </tr><tr><td>115</td> <td>7</td> <td>7</td> </tr><tr><td>125</td> <td>17</td> <td>17</td> </tr><tr><td>\(\sum\)X = 540</td> <td></td> <td>\(\sum\)\(\begin {vmatrix}D\\ \end {vmatrix}\) = 52</td> </tr></tbody></table><p>Mean (\(\overline X\)) = \(\frac {\sum X}N\) = \(\frac {540}5\) = 108</p> <p>MeanDeviation from mean = \(\frac {\sum\begin {vmatrix}D\\ \end {vmatrix}}N\) = \(\frac {52}5\) = 10.4<sub>Ans</sub></p>
Q2:
Find mean deviation from median:
400, 100, 200, 300, 350, 250, 150
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>The given data in ascending order:</p> <p>100. 150, 200, 250, 300, 350, 400</p> <p>N = 7</p> <p>\begin{align*} Median\; (M_d) &= (\frac {N + 1}2)^{th} term\\ &= (\frac {7 + 1}2)^{th}) term\\ &= (\frac 82)^{th} term\\ &= 4^{th} term\\ &= 250\\ \end{align*}</p> <p>Calculating the mean deviation from median</p> <table width="366"><tbody><tr><td><strong>x</strong></td> <td><strong>x - mdn.</strong></td> <td><strong>\(\begin{vmatrix} x - mdn\\ \end{vmatrix}\)</strong></td> </tr><tr><td>100</td> <td>100 - 250 = -150</td> <td>150</td> </tr><tr><td>150</td> <td>150 - 250 = -100</td> <td>100</td> </tr><tr><td>200</td> <td>200 - 250 = -50</td> <td>50</td> </tr><tr><td>250</td> <td>250 - 250 = 0</td> <td>0</td> </tr><tr><td>300</td> <td>300 - 250 = 50</td> <td>50</td> </tr><tr><td>350</td> <td>350 - 250 = 100</td> <td>100</td> </tr><tr><td>400</td> <td>400 - 250 = 150</td> <td>150</td> </tr><tr><td></td> <td>N = 7</td> <td>\(\sum\)\(\begin{vmatrix} x - mdn\\ \end{vmatrix}\) = 600</td> </tr></tbody></table><p>\begin{align*} Mean\; Deviation\; from\; median\; &= \frac {\sum\begin{vmatrix} x - mdn\\ \end{vmatrix}}N\\ &= \frac {600}7\\ &= 85.71\\ \end{align*}</p> <p>∴ Mean Deviation from median = 85.71<sub>Ans</sub></p>
Q3:
Calculate the mean deviation from median from the data given below: 40, 44, 54, 60, 62
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given data is:</p> <p>40, 44, 54, 60, 62</p> <p>N = 5</p> <p>\begin{align*} Median\; (M_d) &= \frac {(N+1)^{th}}2\; term\\ &= \frac {(5+1)^{th}}2\;term\\ &= \frac {6^{th}}2\;term\\ &= 3^{rd}\; term\\ \end{align*}</p> <p>Position of 3<sup>rd</sup> term = 54</p> <p>∴ median (mdn) = 54</p> <p>Calculating mean deviation from median</p> <table width="236"><tbody><tr><td><strong>x</strong></td> <td><strong>x - median</strong></td> <td><strong>\(\begin{vmatrix}x - median\end{vmatrix}\)</strong></td> </tr><tr><td>40</td> <td>-14</td> <td>14</td> </tr><tr><td>44</td> <td>-10</td> <td>10</td> </tr><tr><td>54</td> <td>0</td> <td>0</td> </tr><tr><td>60</td> <td>6</td> <td>6</td> </tr><tr><td>62</td> <td>8</td> <td>8</td> </tr><tr><td></td> <td></td> <td>\(\sum\)\(\begin{vmatrix}x - median\end{vmatrix}\) = 38</td> </tr></tbody></table><p>\begin{align*} Mean\; deviation\; from\; median &= \frac {\sum\begin{vmatrix}x - median\end{vmatrix}}N\\ &= \frac {38}5\\ &= 7.6_{Ans}\\ \end{align*}</p>
Q4:
Compute the mean deviation from the mean and its coefficient from the data given below:
Score (x) |
1 |
2 |
3 |
4 |
5 |
Frequency (f) |
2 |
5 |
6 |
5 |
2 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mean</p> <table width="353"><tbody><tr><td> <p><strong>Score</strong></p> <p><strong>(x)</strong></p> </td> <td> <p><strong>Frequency</strong></p> <p><strong>(f)</strong></p> </td> <td><strong>fx</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}x - \overline{X}\\ \end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>4</td> </tr><tr><td>2</td> <td>5</td> <td>10</td> <td>1</td> <td>5</td> </tr><tr><td>3</td> <td>6</td> <td>18</td> <td>0</td> <td>0</td> </tr><tr><td>4</td> <td>5</td> <td>20</td> <td>1</td> <td>5</td> </tr><tr><td>5</td> <td>2</td> <td>10</td> <td>2</td> <td>4</td> </tr><tr><td></td> <td>N = 20</td> <td>\(\sum\)fx = 60</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}D\end{vmatrix}\) = 18</td> </tr></tbody></table><p>\begin{align*} Mean\; (\overline{X}) &= \frac {\sum{fx}}N\\ &= \frac {60}{20}\\ &= 3\\ \end{align*}</p> <p>\begin{align*} Mean\; Deviation\; from\; mean\;(M.D) &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {18}{20}\\ &= 0.9_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;M.D &= \frac {M.D.}{Mean}\\ &= \frac {0.9}3\\ &= 0.3_{Ans}\\ \end{align*}</p>
Q5:
Calculate the mean deviation from mean according to the data given below:
x |
10 |
15 |
20 |
25 |
30 |
f |
2 |
4 |
6 |
8 |
5 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Mean Deviation from Mean</p> <table width="360"><tbody><tr><td><strong>x</strong></td> <td><strong>f</strong></td> <td><strong>fx</strong></td> <td><strong>\(\begin{vmatrix}x - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}x - \overline{X}\end{vmatrix}\)</strong></td> </tr><tr><td>10</td> <td>2</td> <td>20</td> <td>12</td> <td>24</td> </tr><tr><td>15</td> <td>4</td> <td>60</td> <td>7</td> <td>28</td> </tr><tr><td>20</td> <td>6</td> <td>120</td> <td>2</td> <td>12</td> </tr><tr><td>25</td> <td>8</td> <td>200</td> <td>3</td> <td>24</td> </tr><tr><td>30</td> <td>5</td> <td>150</td> <td>8</td> <td>40</td> </tr><tr><td></td> <td>N = 25</td> <td>\(\sum\)fx = 550</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}x - \overline{X}\end{vmatrix}\) = 128</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fx}}N\\ &= \frac {550}{25}\\ &= 22\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &= \frac {\sum{f}\begin{vmatrix}x - \overline{X}\end{vmatrix}}N\\ &= \frac {128}{25}\\ &= 5.12_{Ans}\\ \end{align*}</p>
Q6:
Calculate the mean deviation and its coefficient from mean of the following data.
X |
20 |
18 |
16 |
14 |
12 |
10 |
8 |
6 |
f |
2 |
4 |
9 |
18 |
27 |
25 |
14 |
1 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of M.D. from Mean</p> <table width="408"><tbody><tr><td><strong>X</strong></td> <td><strong>f</strong></td> <td><strong>fx</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}X - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>20</td> <td>2</td> <td>40</td> <td>8</td> <td>16</td> </tr><tr><td>18</td> <td>4</td> <td>72</td> <td>6</td> <td>24</td> </tr><tr><td>16</td> <td>9</td> <td>144</td> <td>4</td> <td>36</td> </tr><tr><td>14</td> <td>18</td> <td>252</td> <td>2</td> <td>36</td> </tr><tr><td>12</td> <td>27</td> <td>324</td> <td>0</td> <td>0</td> </tr><tr><td>10</td> <td>25</td> <td>250</td> <td>2</td> <td>50</td> </tr><tr><td>8</td> <td>14</td> <td>112</td> <td>4</td> <td>56</td> </tr><tr><td>6</td> <td>1</td> <td>6</td> <td>12</td> <td>6</td> </tr><tr><td></td> <td>N = 100</td> <td>\(\sum\)fX = 1200</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}D\end{vmatrix}\) = 224</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fX}}N\\ &= \frac {1200}{100}\\ &= 12\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {224}{100}\\ &= 2.24_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;the\;Mean\;Deviation\;from\;Mean &= \frac {M.D.}{Mean}\\ &= \frac {2.24}{12}\\ &= 0.186_{Ans}\\ \end{align*}</p>
Q7:
Find the mean deviation from mode of the following data and its coefficient of M.D.
Marks |
20 |
24 |
30 |
32 |
40 |
No. of students |
12 |
28 |
40 |
26 |
14 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The maximum frequencyis 40 for value of variable 30 so mode (M<sub>o</sub>) = 30</p> <table width="358"><tbody><tr><td><strong>Marks (X)</strong></td> <td><strong>No. of students (f)</strong></td> <td><strong>\(\begin{vmatrix}X - M_o \end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}X - M_o \end{vmatrix}\)</strong></td> </tr><tr><td>20</td> <td>12</td> <td>10</td> <td>120</td> </tr><tr><td>24</td> <td>28</td> <td>6</td> <td>168</td> </tr><tr><td>30</td> <td>40</td> <td>0</td> <td>0</td> </tr><tr><td>32</td> <td>26</td> <td>2</td> <td>52</td> </tr><tr><td>40</td> <td>14</td> <td>10</td> <td>140</td> </tr><tr><td></td> <td>N = 120</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}X - M_o \end{vmatrix}\) = 480</td> </tr></tbody></table><p>\begin{align*} M.D.\;from\;Mode &= \frac {\sum{f}\begin{vmatrix}X - M_o \end{vmatrix}}N\\ &= \frac {480}{120}\\ &= 4_{Ans} \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mode &= \frac {M.D.\;from\;Mode}{mode}\\ &= \frac 4{30}\\ &= 0.133_{Ans}\\ \end{align*}</p>
Q8:
Find the mean deviation from mean of the following data.
Class interval |
0-10 |
10-20 |
20-30 |
30-40 |
40-50 |
Frequency |
2 |
3 |
6 |
5 |
4 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mean</p> <table width="478"><tbody><tr><td><strong>Class interval</strong></td> <td><strong>Mid-value (m)</strong></td> <td><strong>f</strong></td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>0-10</td> <td>5</td> <td>2</td> <td>10</td> <td>23</td> <td>46</td> </tr><tr><td>10-20</td> <td>15</td> <td>3</td> <td>45</td> <td>13</td> <td>39</td> </tr><tr><td>20-30</td> <td>25</td> <td>6</td> <td>150</td> <td>3</td> <td>18</td> </tr><tr><td>30-40</td> <td>35</td> <td>5</td> <td>175</td> <td>7</td> <td>35</td> </tr><tr><td>40-50</td> <td>45</td> <td>4</td> <td>180</td> <td>17</td> <td>68</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td>\(\sum fm\) = 560</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 206</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fm}}N\\ &= \frac {560}{20}\\ &= 28\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &=\frac {\sum {f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {206}{20}\\ &= 10.3_{Ans}\\ \end{align*}</p>
Q9:
Find the mean deviation from mean and its coefficient of the following data:
48, 50, 34, 29, 56, 40, 14, 62, 28, 70, 22, 30, 38, 74, 13, 47, 20, 53, 64, 34, 75, 66, 60, 21, 45, 57, 15, 41
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of M.D. from Mean</p> <table width="425"><tbody><tr><td> <p><strong>Class interval</strong></p> <p><strong>(x)</strong></p> </td> <td> <p><strong>Mid-value</strong></p> <p><strong>(m)</strong></p> </td> <td> <p><strong>frequency</strong></p> <p><strong>(f)</strong></p> </td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>10-20</td> <td>15</td> <td>3</td> <td>45</td> <td>29.28</td> <td>87.84</td> </tr><tr><td>20-30</td> <td>25</td> <td>5</td> <td>125</td> <td>19.28</td> <td>96.4</td> </tr><tr><td>30-40</td> <td>35</td> <td>4</td> <td>140</td> <td>9.28</td> <td>37.12</td> </tr><tr><td>40-50</td> <td>45</td> <td>5</td> <td>225</td> <td>0.72</td> <td>3.6</td> </tr><tr><td>50-60</td> <td>55</td> <td>4</td> <td>220</td> <td>10.72</td> <td>42.88</td> </tr><tr><td>60-70</td> <td>65</td> <td>4</td> <td>260</td> <td>20.72</td> <td>82.88</td> </tr><tr><td>70-80</td> <td>75</td> <td>3</td> <td>225</td> <td>30.72</td> <td>92.16</td> </tr><tr><td></td> <td></td> <td>N = 28</td> <td>\(\sum\) N = 28</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 442.88</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fm}}N\\ &= \frac {1240}{28}\\ &= 44.28\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &= \frac {\sum {f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {442.88}{28}\\ &= 15.82_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;M.D.\;from\;Mean &= \frac {M.D.}{Mean}\\ &= \frac {15.82}{44.28}\\ &= 0.36_{Ans}\\ \end{align*}</p>
Q10:
From the following data calculate the mean deviation from mean.
Class interval |
0-10 |
10-20 |
20-30 |
30-40 |
40-50 |
Frequency |
2 |
3 |
6 |
5 |
4 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let: Assumed mean (A) = 25</p> <p>Calculation of Mean Deviation from Mean</p> <table width="471"><tbody><tr><td>Class interval</td> <td>mid-value</td> <td>f</td> <td>d = \(\frac {m-25}{10}\)</td> <td>fd</td> <td>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m = \overline{X}\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}D\end{vmatrix}\)</td> </tr><tr><td>0-10</td> <td>5</td> <td>2</td> <td>-2</td> <td>-4</td> <td>23</td> <td>46</td> </tr><tr><td>10-20</td> <td>15</td> <td>3</td> <td>-1</td> <td>-3</td> <td>13</td> <td>39</td> </tr><tr><td>20-30</td> <td>25</td> <td>6</td> <td>0</td> <td>0</td> <td>3</td> <td>18</td> </tr><tr><td>30-40</td> <td>35</td> <td>5</td> <td>1</td> <td>5</td> <td>7</td> <td>35</td> </tr><tr><td>40-50</td> <td>45</td> <td>4</td> <td>0</td> <td>8</td> <td>17</td> <td>68</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td></td> <td>\(\sum {fd}\) = 6</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}D\end{vmatrix}\) = 206</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= A + \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N× I\\ &= 25 + \frac 6{20}× 10\\ &= 28\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {206}{20}\\ &= 10.3_{Ans}\\ \end{align*}</p>
Q11:
Compute the mean deviation from mean from the table given below:
Weight in kg. |
20-30 |
30-40 |
40-50 |
50-60 |
60-70 |
No. of items |
2 |
5 |
6 |
5 |
2 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Mean Deviation from Mean</p> <table width="439"><tbody><tr><td><strong>Weight in kg.</strong></td> <td><strong>Mid-value (m)</strong></td> <td><strong>No. of men (f)</strong></td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>20-30</td> <td>25</td> <td>2</td> <td>50</td> <td>20</td> <td>40</td> </tr><tr><td>30-40</td> <td>35</td> <td>5</td> <td>175</td> <td>10</td> <td>50</td> </tr><tr><td>40-50</td> <td>45</td> <td>6</td> <td>270</td> <td>0</td> <td>0</td> </tr><tr><td>50-60</td> <td>55</td> <td>5</td> <td>275</td> <td>10</td> <td>50</td> </tr><tr><td>60-70</td> <td>65</td> <td>2</td> <td>130</td> <td>20</td> <td>40</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td>\(\sum {fm}\) = 900</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 180</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X}) &= \frac {\sum {fm}}N\\ &= \frac {900}{20}\\ &= 45\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean\;(M.D.) &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {180}{20}\\ &= 9\;kg_{Ans}\\ \end{align*}</p>
Q12:
Find the mean deviation from mean for the following data:
Wages (in Rs.) |
0-4 |
0-8 |
0-12 |
0-16 |
0-20 |
No. of persons |
5 |
12 |
22 |
37 |
44 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mean</p> <table width="439"><tbody><tr><td><strong>Wages (in Rs.)</strong></td> <td><strong>Mid-value (m)</strong></td> <td><strong>f</strong></td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>0-4</td> <td>2</td> <td>5</td> <td>10</td> <td>1.09</td> <td>5.45</td> </tr><tr><td>4-8</td> <td>6</td> <td>7</td> <td>42</td> <td>30.91</td> <td>216.37</td> </tr><tr><td>8-12</td> <td>10</td> <td>10</td> <td>100</td> <td>88.91</td> <td>889.1</td> </tr><tr><td>12-16</td> <td>14</td> <td>15</td> <td>210</td> <td>198.91</td> <td>2983.65</td> </tr><tr><td>16-20</td> <td>18</td> <td>7</td> <td>126</td> <td>114.91</td> <td>804.37</td> </tr><tr><td></td> <td></td> <td>N =44</td> <td>\(\sum {fm}\) =488</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 4898.94</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X}) &= \frac {\sum {fm}}N\\ &= \frac {488}{44}\\ &= 11.09\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {4898.94}{44}\\ &= 113.3_{Ans}\\ \end{align*}</p>
Q13:
Calculate the mean deviation from median and its coefficient:
Marks |
20 |
30 |
40 |
50 |
60 |
70 |
No. of students |
4 |
7 |
12 |
2 |
4 |
6 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Mean Deviation from Median</p> <table width="455"><tbody><tr><td><strong>Marks (X)</strong></td> <td><strong>No. of students (f)</strong></td> <td><strong>c.f.</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}X - mdn\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>20</td> <td>4</td> <td>4</td> <td>420</td> <td>80</td> </tr><tr><td>30</td> <td>7</td> <td>11</td> <td>10</td> <td>70</td> </tr><tr><td>40</td> <td>12</td> <td>23</td> <td>0</td> <td>0</td> </tr><tr><td>50</td> <td>2</td> <td>25</td> <td>10</td> <td>20</td> </tr><tr><td>60</td> <td>4</td> <td>29</td> <td>20</td> <td>80</td> </tr><tr><td>70</td> <td>6</td> <td>35</td> <td>30</td> <td>180</td> </tr><tr><td></td> <td>N = 35</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 430</td> </tr></tbody></table><p>\begin{align*} Position\;of\;Median &= (\frac {N+1}2)^{th}\;item\\ &= (\frac {35+1}2)^{th}\;item\\ &= 18^{th}\;item\\ \end{align*}</p> <p>18<sup>th</sup><sup></sup>item = 40</p> <p>∴ Mdn = 40</p> <p>\begin{align*} Mean\;Deviation\;from\;Median &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {430}{35}\\ &= 12.28_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;Mean\;Deviation\;from\;Median &= \frac {M.D.\;from\;Median}{Median}\\ &= \frac {12.28}{40}\\ &= 0.307_{Ans}\\ \end{align*}</p>
Q14:
Find the mean deviation about the median of the following data.
Marks |
0-10 |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
No. of students |
4 |
6 |
10 |
10 |
15 |
5 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of M.D. from Median</p> <table width="474"><tbody><tr><td>Marks</td> <td>f</td> <td>c.f</td> <td>mid-value (m)</td> <td>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - md.\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}D\end{vmatrix}\)</td> </tr><tr><td>0-10</td> <td>4</td> <td>4</td> <td>5</td> <td>30</td> <td>120</td> </tr><tr><td>10-20</td> <td>6</td> <td>10</td> <td>15</td> <td>20</td> <td>120</td> </tr><tr><td>20-30</td> <td>10</td> <td>20</td> <td>25</td> <td>10</td> <td>100</td> </tr><tr><td>30-40</td> <td>10</td> <td>30</td> <td>35</td> <td>0</td> <td>0</td> </tr><tr><td>40-50</td> <td>15</td> <td>45</td> <td>45</td> <td>10</td> <td>150</td> </tr><tr><td>50-60</td> <td>5</td> <td>50</td> <td>55</td> <td>20</td> <td>100</td> </tr><tr><td></td> <td>N = 50</td> <td></td> <td></td> <td></td> <td>\(\sum {f}\)\(\begin{vmatrix}D\end{vmatrix}\) = 590</td> </tr></tbody></table><p>\begin{align*} Median &= \frac {N^{th}}2\;item\\ &= \frac {50^{th}}2\;item\\ &= 25^{th}\;term\\ \end{align*}</p> <p>Median Class = (30-40)</p> <p>Here,</p> <p>L = 30</p> <p>\(\frac N2\) = 25</p> <p>cf = 20</p> <p>f = 10</p> <p>I = 10</p> <p>\begin{align*} Median\;(mdn) &= L\;+\;\frac{\frac N2\;-\;cf}f\; ×\;I\\ &= 30\;+\;\frac {25-20}{10}\;×\;10\\ &= 30\;+\;5\\ &= 35\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Median &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {590}{50}\\ &= 11.8_{Ans}\\ \end{align*}</p>
Q15:
Find the mean deviation from median and its coefficient:
Marks |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
60-70 |
No. of students |
6 |
8 |
11 |
14 |
8 |
3 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Median</p> <table width="474"><tbody><tr><td>Marks</td> <td>f</td> <td>c.f</td> <td>mid-value (m)</td> <td>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - md.\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}D\end{vmatrix}\)</td> </tr><tr><td>10-20</td> <td>6</td> <td>6</td> <td>15</td> <td>25</td> <td>150</td> </tr><tr><td>20-30</td> <td>8</td> <td>14</td> <td>25</td> <td>15</td> <td>120</td> </tr><tr><td>30-40</td> <td>11</td> <td>25</td> <td>35</td> <td>5</td> <td>55</td> </tr><tr><td>40-50</td> <td>14</td> <td>39</td> <td>45</td> <td>5</td> <td>70</td> </tr><tr><td>50-60</td> <td>8</td> <td>47</td> <td>55</td> <td>15</td> <td>120</td> </tr><tr><td>60-70</td> <td>3</td> <td>50</td> <td>65</td> <td>25</td> <td>75</td> </tr><tr><td></td> <td>N = 50</td> <td></td> <td></td> <td></td> <td>\(\sum {f}\)\(\begin{vmatrix}D\end{vmatrix}\) = 590</td> </tr></tbody></table><p>\begin{align*} Position\;of\;Median &= \frac {N^{th}}2\;item\\ &= \frac {50^{th}}2\;item\\ &= 25^{th}\;term\\ \end{align*}</p> <p>Median Class = (30-40)</p> <p>Here,</p> <p>L = 30</p> <p>\(\frac N2\) = 25</p> <p>cf =14</p> <p>f =11</p> <p>I = 10</p> <p></p> <p>\begin{align*} Median\;(mdn) &= L\;+\;\frac{\frac N2\;-\;cf}f\; ×\;I\\ &= 30\;+\;\frac {25-14}{11}\;×\;10\\ &= 30\;+\;\frac {11}{11}\;×\;10\\ &= 40\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Median &= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &= \frac {590}{50}\\ &= 11.8\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;M.D.\;from\;Median &= \frac {M.D.}{Median}\\ &= \frac {11.8}{40}\\ &= 0.295_{Ans}\\ \end{align*}</p> <p></p>
Q16:
Find the mean deviation from median of the following data:
Age (in year) |
10 |
12 |
15 |
16 |
17 |
No. of people |
6 |
14 |
20 |
13 |
7 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Median</p> <table width="433"><tbody><tr><td> <p>Age (in year)</p> <p>X</p> </td> <td> <p>No. of people</p> <p>(f)</p> </td> <td> <p>Cumulative Frequency</p> <p>(c.f.)</p> </td> <td>\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> </tr><tr><td>10</td> <td>6</td> <td>6</td> <td>5</td> <td>30</td> </tr><tr><td>12</td> <td>14</td> <td>20</td> <td>3</td> <td>42</td> </tr><tr><td>15</td> <td>20</td> <td>40</td> <td>0</td> <td>0</td> </tr><tr><td>16</td> <td>13</td> <td>53</td> <td>1</td> <td>13</td> </tr><tr><td>20</td> <td>7</td> <td>60</td> <td>5</td> <td>35</td> </tr><tr><td></td> <td>N = 60</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}X - M_d\end{vmatrix}\) = 120</td> </tr></tbody></table><p>\begin{align*} Median\;(M_d) &= (\frac {N\;+\;1}2)^{th}\;item\\ &= (\frac {60\;+\;1}2)^{th}\;item\\ &= (30.5)^{th}\;item &= 15\\ \end{align*}</p> <p>\begin{align*} M.D.\;from\;Median &= \frac {\sum {f}\begin{vmatrix}X - M_d\end{vmatrix}}N\\ &= \frac {120}{60}\\ &= 2_{Ans}\\ \end{align*}</p>
Q17:
Find the mean deviation from the mode of the given frequency distribution.
Age (in years) |
0-4 |
4-8 |
8-12 |
12-16 |
16-20 |
No. of students |
4 |
6 |
8 |
5 |
2 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mode</p> <table width="414"><tbody><tr><td>Age (in years)</td> <td>f</td> <td>Mid-value (X)</td> <td>\(\begin{vmatrix}X - M_o\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}X - M_o\end{vmatrix}\)</td> </tr><tr><td>0-4</td> <td>4</td> <td>2</td> <td>7.6</td> <td>3.04</td> </tr><tr><td>4-8</td> <td>6</td> <td>6</td> <td>3.6</td> <td>21.6</td> </tr><tr><td>8-12</td> <td>8</td> <td>10</td> <td>0.4</td> <td>3.2</td> </tr><tr><td>12-16</td> <td>5</td> <td>14</td> <td>4.4</td> <td>22</td> </tr><tr><td>16-20</td> <td>2</td> <td>18</td> <td>8.4</td> <td>16.8</td> </tr><tr><td></td> <td>N = 25</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}X - M_o\end{vmatrix}\) = 34</td> </tr></tbody></table><p>Model Class = The class containing maximum frequency = (8-12)</p> <p>Here,</p> <p>L = 8</p> <p>f<sub>0</sub> = 6</p> <p>f<sub>1</sub> = 8</p> <p>f<sub>2</sub> = 5</p> <p>\begin{align*} Mode\;(M_o) &= L\;+\;\frac {f_1\;-\;f_0}{2f_1\;-\;f_0\;-\;f_2}\\ &= 8 + \frac {8\;-\;6}{2\;×\;8\;-\;6\;-\;5}\\ &= 8\;+\;\frac 85\\ &= 9.6\;years\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mode &= \frac {\sum {f}\begin{vmatrix}X - M_o\end{vmatrix}}N\\ &= \frac {34}{25}\\ &= 1.36\;years_{Ans}\\ \end{align*}</p>
Q18:
Find the mean from median of the following data:
Age (in years) |
20-30 |
30-40 |
40-50 |
50-60 |
60-70 |
No. of people |
5 |
7 |
8 |
6 |
4 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Median</p> <table width="466"><tbody><tr><td>Age (in years)</td> <td>Mid-value (X)</td> <td>Frequency (f)</td> <td>c.f.</td> <td>\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> </tr><tr><td>20-30</td> <td>25</td> <td>5</td> <td>5</td> <td>18.75</td> <td>93.75</td> </tr><tr><td>30-40</td> <td>35</td> <td>7</td> <td>12</td> <td>8.75</td> <td>61.25</td> </tr><tr><td>40-50</td> <td>45</td> <td>8</td> <td>20</td> <td>1.25</td> <td>10</td> </tr><tr><td>50-60</td> <td>55</td> <td>6</td> <td>26</td> <td>11.25</td> <td>67.5</td> </tr><tr><td>60-70</td> <td>65</td> <td>4</td> <td>30</td> <td>21.25</td> <td>85</td> </tr><tr><td></td> <td></td> <td>N = 30</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}X - M_d\end{vmatrix}\) = 317.5</td> </tr></tbody></table><p>\begin{align*} Class\;of\;Median &= (\frac N2)^{th}\;item\\ &= (\frac {30}2)^{th}\;item\\ &= 15^{th}\;item\\ \end{align*}</p> <p>15<sup>th</sup> item represents (40-50) class</p> <p>Here,</p> <p>L = 40</p> <p>\(\frac N2\) = 15</p> <p>c.f. = 12</p> <p>f = 8</p> <p>I = 10</p> <p>\begin{align*} Median\;(M_d) &= L\;+\;\frac {\frac N2 - c.f.}f\;×\;I\\ &= 40\;+\;\frac {15\;-\;12}8\;×\;10\\ &= 40\;+\;\frac {30}8\\ &= 43.75\\ \end{align*}</p> <p>\begin{align*} M.D.\;from\;Median &= \frac {\sum {f}\begin{vmatrix}X - M_d\end{vmatrix}}N\\ &= \frac {317.5}{30}\\ &= 10.58years_{Ans}\\ \end{align*}</p>