System Tools

Windows XP provides some basic tools to make the maintenance process. This note contains description on System Tools.

Summary

Windows XP provides some basic tools to make the maintenance process. This note contains description on System Tools.

Things to Remember

  • Windows XP provides some basic tools to make the maintenance process.
  • All Windows XP computers have at least one hard disk.The hard disk acts as computer’s storage area.
  • Disk Cleanup inspects your hard disk and looks for the files that can be safely deleted.

MCQs

No MCQs found.

Subjective Questions

Q1:

Find the mean deviation from mean.

Daily wages (Rs) 90, 115, 100, 125, 110


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of mean deviation from mean</p> <table width="293"><tbody><tr><td><strong>Wages (Rs) X</strong></td> <td><strong>D = X - \(\overline X\)</strong></td> <td><strong>\(\begin {vmatrix}D\\ \end {vmatrix}\)</strong></td> </tr><tr><td>90</td> <td>-18</td> <td>18</td> </tr><tr><td>100</td> <td>-8</td> <td>8</td> </tr><tr><td>110</td> <td>2</td> <td>2</td> </tr><tr><td>115</td> <td>7</td> <td>7</td> </tr><tr><td>125</td> <td>17</td> <td>17</td> </tr><tr><td>\(\sum\)X = 540</td> <td></td> <td>\(\sum\)\(\begin {vmatrix}D\\ \end {vmatrix}\) = 52</td> </tr></tbody></table><p>Mean (\(\overline X\)) = \(\frac {\sum X}N\) = \(\frac {540}5\) = 108</p> <p>MeanDeviation from mean = \(\frac {\sum\begin {vmatrix}D\\ \end {vmatrix}}N\) = \(\frac {52}5\) = 10.4<sub>Ans</sub></p>

Q2:

Find mean deviation from median:

400, 100, 200, 300, 350, 250, 150


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>The given data in ascending order:</p> <p>100. 150, 200, 250, 300, 350, 400</p> <p>N = 7</p> <p>\begin{align*} Median\; (M_d) &amp;= (\frac {N + 1}2)^{th} term\\ &amp;= (\frac {7 + 1}2)^{th}) term\\ &amp;= (\frac 82)^{th} term\\ &amp;= 4^{th} term\\ &amp;= 250\\ \end{align*}</p> <p>Calculating the mean deviation from median</p> <table width="366"><tbody><tr><td><strong>x</strong></td> <td><strong>x - mdn.</strong></td> <td><strong>\(\begin{vmatrix} x - mdn\\ \end{vmatrix}\)</strong></td> </tr><tr><td>100</td> <td>100 - 250 = -150</td> <td>150</td> </tr><tr><td>150</td> <td>150 - 250 = -100</td> <td>100</td> </tr><tr><td>200</td> <td>200 - 250 = -50</td> <td>50</td> </tr><tr><td>250</td> <td>250 - 250 = 0</td> <td>0</td> </tr><tr><td>300</td> <td>300 - 250 = 50</td> <td>50</td> </tr><tr><td>350</td> <td>350 - 250 = 100</td> <td>100</td> </tr><tr><td>400</td> <td>400 - 250 = 150</td> <td>150</td> </tr><tr><td></td> <td>N = 7</td> <td>\(\sum\)\(\begin{vmatrix} x - mdn\\ \end{vmatrix}\) = 600</td> </tr></tbody></table><p>\begin{align*} Mean\; Deviation\; from\; median\; &amp;= \frac {\sum\begin{vmatrix} x - mdn\\ \end{vmatrix}}N\\ &amp;= \frac {600}7\\ &amp;= 85.71\\ \end{align*}</p> <p>&there4; Mean Deviation from median = 85.71<sub>Ans</sub></p>

Q3:

Calculate the mean deviation from median from the data given below: 40, 44, 54, 60, 62


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Given data is:</p> <p>40, 44, 54, 60, 62</p> <p>N = 5</p> <p>\begin{align*} Median\; (M_d) &amp;= \frac {(N+1)^{th}}2\; term\\ &amp;= \frac {(5+1)^{th}}2\;term\\ &amp;= \frac {6^{th}}2\;term\\ &amp;= 3^{rd}\; term\\ \end{align*}</p> <p>Position of 3<sup>rd</sup> term = 54</p> <p>&there4; median (mdn) = 54</p> <p>Calculating mean deviation from median</p> <table width="236"><tbody><tr><td><strong>x</strong></td> <td><strong>x - median</strong></td> <td><strong>\(\begin{vmatrix}x - median\end{vmatrix}\)</strong></td> </tr><tr><td>40</td> <td>-14</td> <td>14</td> </tr><tr><td>44</td> <td>-10</td> <td>10</td> </tr><tr><td>54</td> <td>0</td> <td>0</td> </tr><tr><td>60</td> <td>6</td> <td>6</td> </tr><tr><td>62</td> <td>8</td> <td>8</td> </tr><tr><td></td> <td></td> <td>\(\sum\)\(\begin{vmatrix}x - median\end{vmatrix}\) = 38</td> </tr></tbody></table><p>\begin{align*} Mean\; deviation\; from\; median &amp;= \frac {\sum\begin{vmatrix}x - median\end{vmatrix}}N\\ &amp;= \frac {38}5\\ &amp;= 7.6_{Ans}\\ \end{align*}</p>

Q4:

Compute the mean deviation from the mean and its coefficient from the data given below:

Score (x) 1 2 3 4 5
Frequency (f) 2 5 6 5 2

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mean</p> <table width="353"><tbody><tr><td> <p><strong>Score</strong></p> <p><strong>(x)</strong></p> </td> <td> <p><strong>Frequency</strong></p> <p><strong>(f)</strong></p> </td> <td><strong>fx</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}x - \overline{X}\\ \end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>4</td> </tr><tr><td>2</td> <td>5</td> <td>10</td> <td>1</td> <td>5</td> </tr><tr><td>3</td> <td>6</td> <td>18</td> <td>0</td> <td>0</td> </tr><tr><td>4</td> <td>5</td> <td>20</td> <td>1</td> <td>5</td> </tr><tr><td>5</td> <td>2</td> <td>10</td> <td>2</td> <td>4</td> </tr><tr><td></td> <td>N = 20</td> <td>\(\sum\)fx = 60</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}D\end{vmatrix}\) = 18</td> </tr></tbody></table><p>\begin{align*} Mean\; (\overline{X}) &amp;= \frac {\sum{fx}}N\\ &amp;= \frac {60}{20}\\ &amp;= 3\\ \end{align*}</p> <p>\begin{align*} Mean\; Deviation\; from\; mean\;(M.D) &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {18}{20}\\ &amp;= 0.9_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;M.D &amp;= \frac {M.D.}{Mean}\\ &amp;= \frac {0.9}3\\ &amp;= 0.3_{Ans}\\ \end{align*}</p>

Q5:

Calculate the mean deviation from mean according to the data given below:

x 10 15 20 25 30
f 2 4 6 8 5

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculating Mean Deviation from Mean</p> <table width="360"><tbody><tr><td><strong>x</strong></td> <td><strong>f</strong></td> <td><strong>fx</strong></td> <td><strong>\(\begin{vmatrix}x - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}x - \overline{X}\end{vmatrix}\)</strong></td> </tr><tr><td>10</td> <td>2</td> <td>20</td> <td>12</td> <td>24</td> </tr><tr><td>15</td> <td>4</td> <td>60</td> <td>7</td> <td>28</td> </tr><tr><td>20</td> <td>6</td> <td>120</td> <td>2</td> <td>12</td> </tr><tr><td>25</td> <td>8</td> <td>200</td> <td>3</td> <td>24</td> </tr><tr><td>30</td> <td>5</td> <td>150</td> <td>8</td> <td>40</td> </tr><tr><td></td> <td>N = 25</td> <td>\(\sum\)fx = 550</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}x - \overline{X}\end{vmatrix}\) = 128</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &amp;= \frac {\sum{fx}}N\\ &amp;= \frac {550}{25}\\ &amp;= 22\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &amp;= \frac {\sum{f}\begin{vmatrix}x - \overline{X}\end{vmatrix}}N\\ &amp;= \frac {128}{25}\\ &amp;= 5.12_{Ans}\\ \end{align*}</p>

Q6:

Calculate the mean deviation and its coefficient from mean of the following data.

X 20 18 16 14 12 10 8 6
f 2 4 9 18 27 25 14 1

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of M.D. from Mean</p> <table width="408"><tbody><tr><td><strong>X</strong></td> <td><strong>f</strong></td> <td><strong>fx</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}X - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>20</td> <td>2</td> <td>40</td> <td>8</td> <td>16</td> </tr><tr><td>18</td> <td>4</td> <td>72</td> <td>6</td> <td>24</td> </tr><tr><td>16</td> <td>9</td> <td>144</td> <td>4</td> <td>36</td> </tr><tr><td>14</td> <td>18</td> <td>252</td> <td>2</td> <td>36</td> </tr><tr><td>12</td> <td>27</td> <td>324</td> <td>0</td> <td>0</td> </tr><tr><td>10</td> <td>25</td> <td>250</td> <td>2</td> <td>50</td> </tr><tr><td>8</td> <td>14</td> <td>112</td> <td>4</td> <td>56</td> </tr><tr><td>6</td> <td>1</td> <td>6</td> <td>12</td> <td>6</td> </tr><tr><td></td> <td>N = 100</td> <td>\(\sum\)fX = 1200</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}D\end{vmatrix}\) = 224</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &amp;= \frac {\sum{fX}}N\\ &amp;= \frac {1200}{100}\\ &amp;= 12\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {224}{100}\\ &amp;= 2.24_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;the\;Mean\;Deviation\;from\;Mean &amp;= \frac {M.D.}{Mean}\\ &amp;= \frac {2.24}{12}\\ &amp;= 0.186_{Ans}\\ \end{align*}</p>

Q7:

Find the mean deviation from mode of the following data and its coefficient of M.D.

Marks 20 24 30 32 40
No. of students 12 28 40 26 14

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>The maximum frequencyis 40 for value of variable 30 so mode (M<sub>o</sub>) = 30</p> <table width="358"><tbody><tr><td><strong>Marks (X)</strong></td> <td><strong>No. of students (f)</strong></td> <td><strong>\(\begin{vmatrix}X - M_o \end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}X - M_o \end{vmatrix}\)</strong></td> </tr><tr><td>20</td> <td>12</td> <td>10</td> <td>120</td> </tr><tr><td>24</td> <td>28</td> <td>6</td> <td>168</td> </tr><tr><td>30</td> <td>40</td> <td>0</td> <td>0</td> </tr><tr><td>32</td> <td>26</td> <td>2</td> <td>52</td> </tr><tr><td>40</td> <td>14</td> <td>10</td> <td>140</td> </tr><tr><td></td> <td>N = 120</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}X - M_o \end{vmatrix}\) = 480</td> </tr></tbody></table><p>\begin{align*} M.D.\;from\;Mode &amp;= \frac {\sum{f}\begin{vmatrix}X - M_o \end{vmatrix}}N\\ &amp;= \frac {480}{120}\\ &amp;= 4_{Ans} \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mode &amp;= \frac {M.D.\;from\;Mode}{mode}\\ &amp;= \frac 4{30}\\ &amp;= 0.133_{Ans}\\ \end{align*}</p>

Q8:

Find the mean deviation from mean of the following data.

Class interval 0-10 10-20 20-30 30-40 40-50
Frequency 2 3 6 5 4

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mean</p> <table width="478"><tbody><tr><td><strong>Class interval</strong></td> <td><strong>Mid-value (m)</strong></td> <td><strong>f</strong></td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>0-10</td> <td>5</td> <td>2</td> <td>10</td> <td>23</td> <td>46</td> </tr><tr><td>10-20</td> <td>15</td> <td>3</td> <td>45</td> <td>13</td> <td>39</td> </tr><tr><td>20-30</td> <td>25</td> <td>6</td> <td>150</td> <td>3</td> <td>18</td> </tr><tr><td>30-40</td> <td>35</td> <td>5</td> <td>175</td> <td>7</td> <td>35</td> </tr><tr><td>40-50</td> <td>45</td> <td>4</td> <td>180</td> <td>17</td> <td>68</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td>\(\sum fm\) = 560</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 206</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &amp;= \frac {\sum{fm}}N\\ &amp;= \frac {560}{20}\\ &amp;= 28\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &amp;=\frac {\sum {f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {206}{20}\\ &amp;= 10.3_{Ans}\\ \end{align*}</p>

Q9:

Find the mean deviation from mean and its coefficient of the following data:

48, 50, 34, 29, 56, 40, 14, 62, 28, 70, 22, 30, 38, 74, 13, 47, 20, 53, 64, 34, 75, 66, 60, 21, 45, 57, 15, 41


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of M.D. from Mean</p> <table width="425"><tbody><tr><td> <p><strong>Class interval</strong></p> <p><strong>(x)</strong></p> </td> <td> <p><strong>Mid-value</strong></p> <p><strong>(m)</strong></p> </td> <td> <p><strong>frequency</strong></p> <p><strong>(f)</strong></p> </td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>10-20</td> <td>15</td> <td>3</td> <td>45</td> <td>29.28</td> <td>87.84</td> </tr><tr><td>20-30</td> <td>25</td> <td>5</td> <td>125</td> <td>19.28</td> <td>96.4</td> </tr><tr><td>30-40</td> <td>35</td> <td>4</td> <td>140</td> <td>9.28</td> <td>37.12</td> </tr><tr><td>40-50</td> <td>45</td> <td>5</td> <td>225</td> <td>0.72</td> <td>3.6</td> </tr><tr><td>50-60</td> <td>55</td> <td>4</td> <td>220</td> <td>10.72</td> <td>42.88</td> </tr><tr><td>60-70</td> <td>65</td> <td>4</td> <td>260</td> <td>20.72</td> <td>82.88</td> </tr><tr><td>70-80</td> <td>75</td> <td>3</td> <td>225</td> <td>30.72</td> <td>92.16</td> </tr><tr><td></td> <td></td> <td>N = 28</td> <td>\(\sum\) N = 28</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 442.88</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &amp;= \frac {\sum{fm}}N\\ &amp;= \frac {1240}{28}\\ &amp;= 44.28\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &amp;= \frac {\sum {f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {442.88}{28}\\ &amp;= 15.82_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;M.D.\;from\;Mean &amp;= \frac {M.D.}{Mean}\\ &amp;= \frac {15.82}{44.28}\\ &amp;= 0.36_{Ans}\\ \end{align*}</p>

Q10:

From the following data calculate the mean deviation from mean.

Class interval 0-10 10-20 20-30 30-40 40-50
Frequency 2 3 6 5 4

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let: Assumed mean (A) = 25</p> <p>Calculation of Mean Deviation from Mean</p> <table width="471"><tbody><tr><td>Class interval</td> <td>mid-value</td> <td>f</td> <td>d = \(\frac {m-25}{10}\)</td> <td>fd</td> <td>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m = \overline{X}\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}D\end{vmatrix}\)</td> </tr><tr><td>0-10</td> <td>5</td> <td>2</td> <td>-2</td> <td>-4</td> <td>23</td> <td>46</td> </tr><tr><td>10-20</td> <td>15</td> <td>3</td> <td>-1</td> <td>-3</td> <td>13</td> <td>39</td> </tr><tr><td>20-30</td> <td>25</td> <td>6</td> <td>0</td> <td>0</td> <td>3</td> <td>18</td> </tr><tr><td>30-40</td> <td>35</td> <td>5</td> <td>1</td> <td>5</td> <td>7</td> <td>35</td> </tr><tr><td>40-50</td> <td>45</td> <td>4</td> <td>0</td> <td>8</td> <td>17</td> <td>68</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td></td> <td>\(\sum {fd}\) = 6</td> <td></td> <td>\(\sum\)f\(\begin{vmatrix}D\end{vmatrix}\) = 206</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &amp;= A + \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N&times; I\\ &amp;= 25 + \frac 6{20}&times; 10\\ &amp;= 28\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {206}{20}\\ &amp;= 10.3_{Ans}\\ \end{align*}</p>

Q11:

Compute the mean deviation from mean from the table given below:

Weight in kg. 20-30 30-40 40-50 50-60 60-70
No. of items 2 5 6 5 2

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculating Mean Deviation from Mean</p> <table width="439"><tbody><tr><td><strong>Weight in kg.</strong></td> <td><strong>Mid-value (m)</strong></td> <td><strong>No. of men (f)</strong></td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>20-30</td> <td>25</td> <td>2</td> <td>50</td> <td>20</td> <td>40</td> </tr><tr><td>30-40</td> <td>35</td> <td>5</td> <td>175</td> <td>10</td> <td>50</td> </tr><tr><td>40-50</td> <td>45</td> <td>6</td> <td>270</td> <td>0</td> <td>0</td> </tr><tr><td>50-60</td> <td>55</td> <td>5</td> <td>275</td> <td>10</td> <td>50</td> </tr><tr><td>60-70</td> <td>65</td> <td>2</td> <td>130</td> <td>20</td> <td>40</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td>\(\sum {fm}\) = 900</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 180</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X}) &amp;= \frac {\sum {fm}}N\\ &amp;= \frac {900}{20}\\ &amp;= 45\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean\;(M.D.) &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {180}{20}\\ &amp;= 9\;kg_{Ans}\\ \end{align*}</p>

Q12:

Find the mean deviation from mean for the following data:

Wages (in Rs.) 0-4 0-8 0-12 0-16 0-20
No. of persons 5 12 22 37 44

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mean</p> <table width="439"><tbody><tr><td><strong>Wages (in Rs.)</strong></td> <td><strong>Mid-value (m)</strong></td> <td><strong>f</strong></td> <td><strong>fm</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - \overline{X}\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>0-4</td> <td>2</td> <td>5</td> <td>10</td> <td>1.09</td> <td>5.45</td> </tr><tr><td>4-8</td> <td>6</td> <td>7</td> <td>42</td> <td>30.91</td> <td>216.37</td> </tr><tr><td>8-12</td> <td>10</td> <td>10</td> <td>100</td> <td>88.91</td> <td>889.1</td> </tr><tr><td>12-16</td> <td>14</td> <td>15</td> <td>210</td> <td>198.91</td> <td>2983.65</td> </tr><tr><td>16-20</td> <td>18</td> <td>7</td> <td>126</td> <td>114.91</td> <td>804.37</td> </tr><tr><td></td> <td></td> <td>N =44</td> <td>\(\sum {fm}\) =488</td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 4898.94</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X}) &amp;= \frac {\sum {fm}}N\\ &amp;= \frac {488}{44}\\ &amp;= 11.09\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mean &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {4898.94}{44}\\ &amp;= 113.3_{Ans}\\ \end{align*}</p>

Q13:

Calculate the mean deviation from median and its coefficient:

Marks 20 30 40 50 60 70
No. of students 4 7 12 2 4 6

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculating Mean Deviation from Median</p> <table width="455"><tbody><tr><td><strong>Marks (X)</strong></td> <td><strong>No. of students (f)</strong></td> <td><strong>c.f.</strong></td> <td><strong>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}X - mdn\end{vmatrix}\)</strong></td> <td><strong>f\(\begin{vmatrix}D\end{vmatrix}\)</strong></td> </tr><tr><td>20</td> <td>4</td> <td>4</td> <td>420</td> <td>80</td> </tr><tr><td>30</td> <td>7</td> <td>11</td> <td>10</td> <td>70</td> </tr><tr><td>40</td> <td>12</td> <td>23</td> <td>0</td> <td>0</td> </tr><tr><td>50</td> <td>2</td> <td>25</td> <td>10</td> <td>20</td> </tr><tr><td>60</td> <td>4</td> <td>29</td> <td>20</td> <td>80</td> </tr><tr><td>70</td> <td>6</td> <td>35</td> <td>30</td> <td>180</td> </tr><tr><td></td> <td>N = 35</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}D\end{vmatrix}\) = 430</td> </tr></tbody></table><p>\begin{align*} Position\;of\;Median &amp;= (\frac {N+1}2)^{th}\;item\\ &amp;= (\frac {35+1}2)^{th}\;item\\ &amp;= 18^{th}\;item\\ \end{align*}</p> <p>18<sup>th</sup><sup></sup>item = 40</p> <p>&there4; Mdn = 40</p> <p>\begin{align*} Mean\;Deviation\;from\;Median &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {430}{35}\\ &amp;= 12.28_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;Mean\;Deviation\;from\;Median &amp;= \frac {M.D.\;from\;Median}{Median}\\ &amp;= \frac {12.28}{40}\\ &amp;= 0.307_{Ans}\\ \end{align*}</p>

Q14:

Find the mean deviation about the median of the following data.

Marks 0-10 10-20 20-30 30-40 40-50 50-60
No. of students 4 6 10 10 15 5

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of M.D. from Median</p> <table width="474"><tbody><tr><td>Marks</td> <td>f</td> <td>c.f</td> <td>mid-value (m)</td> <td>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - md.\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}D\end{vmatrix}\)</td> </tr><tr><td>0-10</td> <td>4</td> <td>4</td> <td>5</td> <td>30</td> <td>120</td> </tr><tr><td>10-20</td> <td>6</td> <td>10</td> <td>15</td> <td>20</td> <td>120</td> </tr><tr><td>20-30</td> <td>10</td> <td>20</td> <td>25</td> <td>10</td> <td>100</td> </tr><tr><td>30-40</td> <td>10</td> <td>30</td> <td>35</td> <td>0</td> <td>0</td> </tr><tr><td>40-50</td> <td>15</td> <td>45</td> <td>45</td> <td>10</td> <td>150</td> </tr><tr><td>50-60</td> <td>5</td> <td>50</td> <td>55</td> <td>20</td> <td>100</td> </tr><tr><td></td> <td>N = 50</td> <td></td> <td></td> <td></td> <td>\(\sum {f}\)\(\begin{vmatrix}D\end{vmatrix}\) = 590</td> </tr></tbody></table><p>\begin{align*} Median &amp;= \frac {N^{th}}2\;item\\ &amp;= \frac {50^{th}}2\;item\\ &amp;= 25^{th}\;term\\ \end{align*}</p> <p>Median Class = (30-40)</p> <p>Here,</p> <p>L = 30</p> <p>\(\frac N2\) = 25</p> <p>cf = 20</p> <p>f = 10</p> <p>I = 10</p> <p>\begin{align*} Median\;(mdn) &amp;= L\;+\;\frac{\frac N2\;-\;cf}f\; &times;\;I\\ &amp;= 30\;+\;\frac {25-20}{10}\;&times;\;10\\ &amp;= 30\;+\;5\\ &amp;= 35\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Median &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {590}{50}\\ &amp;= 11.8_{Ans}\\ \end{align*}</p>

Q15:

Find the mean deviation from median and its coefficient:

Marks 10-20 20-30 30-40 40-50 50-60 60-70
No. of students 6 8 11 14 8 3

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Median</p> <table width="474"><tbody><tr><td>Marks</td> <td>f</td> <td>c.f</td> <td>mid-value (m)</td> <td>\(\begin{vmatrix}D\end{vmatrix}\) = \(\begin{vmatrix}m - md.\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}D\end{vmatrix}\)</td> </tr><tr><td>10-20</td> <td>6</td> <td>6</td> <td>15</td> <td>25</td> <td>150</td> </tr><tr><td>20-30</td> <td>8</td> <td>14</td> <td>25</td> <td>15</td> <td>120</td> </tr><tr><td>30-40</td> <td>11</td> <td>25</td> <td>35</td> <td>5</td> <td>55</td> </tr><tr><td>40-50</td> <td>14</td> <td>39</td> <td>45</td> <td>5</td> <td>70</td> </tr><tr><td>50-60</td> <td>8</td> <td>47</td> <td>55</td> <td>15</td> <td>120</td> </tr><tr><td>60-70</td> <td>3</td> <td>50</td> <td>65</td> <td>25</td> <td>75</td> </tr><tr><td></td> <td>N = 50</td> <td></td> <td></td> <td></td> <td>\(\sum {f}\)\(\begin{vmatrix}D\end{vmatrix}\) = 590</td> </tr></tbody></table><p>\begin{align*} Position\;of\;Median &amp;= \frac {N^{th}}2\;item\\ &amp;= \frac {50^{th}}2\;item\\ &amp;= 25^{th}\;term\\ \end{align*}</p> <p>Median Class = (30-40)</p> <p>Here,</p> <p>L = 30</p> <p>\(\frac N2\) = 25</p> <p>cf =14</p> <p>f =11</p> <p>I = 10</p> <p></p> <p>\begin{align*} Median\;(mdn) &amp;= L\;+\;\frac{\frac N2\;-\;cf}f\; &times;\;I\\ &amp;= 30\;+\;\frac {25-14}{11}\;&times;\;10\\ &amp;= 30\;+\;\frac {11}{11}\;&times;\;10\\ &amp;= 40\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Median &amp;= \frac {\sum{f}\begin{vmatrix}D\end{vmatrix}}N\\ &amp;= \frac {590}{50}\\ &amp;= 11.8\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;M.D.\;from\;Median &amp;= \frac {M.D.}{Median}\\ &amp;= \frac {11.8}{40}\\ &amp;= 0.295_{Ans}\\ \end{align*}</p> <p></p>

Q16:

Find the mean deviation from median of the following data:

Age (in year) 10 12 15 16 17
No. of people 6 14 20 13 7

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Median</p> <table width="433"><tbody><tr><td> <p>Age (in year)</p> <p>X</p> </td> <td> <p>No. of people</p> <p>(f)</p> </td> <td> <p>Cumulative Frequency</p> <p>(c.f.)</p> </td> <td>\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> </tr><tr><td>10</td> <td>6</td> <td>6</td> <td>5</td> <td>30</td> </tr><tr><td>12</td> <td>14</td> <td>20</td> <td>3</td> <td>42</td> </tr><tr><td>15</td> <td>20</td> <td>40</td> <td>0</td> <td>0</td> </tr><tr><td>16</td> <td>13</td> <td>53</td> <td>1</td> <td>13</td> </tr><tr><td>20</td> <td>7</td> <td>60</td> <td>5</td> <td>35</td> </tr><tr><td></td> <td>N = 60</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}X - M_d\end{vmatrix}\) = 120</td> </tr></tbody></table><p>\begin{align*} Median\;(M_d) &amp;= (\frac {N\;+\;1}2)^{th}\;item\\ &amp;= (\frac {60\;+\;1}2)^{th}\;item\\ &amp;= (30.5)^{th}\;item &amp;= 15\\ \end{align*}</p> <p>\begin{align*} M.D.\;from\;Median &amp;= \frac {\sum {f}\begin{vmatrix}X - M_d\end{vmatrix}}N\\ &amp;= \frac {120}{60}\\ &amp;= 2_{Ans}\\ \end{align*}</p>

Q17:

Find the mean deviation from the mode of the given frequency distribution.

Age (in years) 0-4 4-8 8-12 12-16 16-20
No. of students 4 6 8 5 2

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Mode</p> <table width="414"><tbody><tr><td>Age (in years)</td> <td>f</td> <td>Mid-value (X)</td> <td>\(\begin{vmatrix}X - M_o\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}X - M_o\end{vmatrix}\)</td> </tr><tr><td>0-4</td> <td>4</td> <td>2</td> <td>7.6</td> <td>3.04</td> </tr><tr><td>4-8</td> <td>6</td> <td>6</td> <td>3.6</td> <td>21.6</td> </tr><tr><td>8-12</td> <td>8</td> <td>10</td> <td>0.4</td> <td>3.2</td> </tr><tr><td>12-16</td> <td>5</td> <td>14</td> <td>4.4</td> <td>22</td> </tr><tr><td>16-20</td> <td>2</td> <td>18</td> <td>8.4</td> <td>16.8</td> </tr><tr><td></td> <td>N = 25</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}X - M_o\end{vmatrix}\) = 34</td> </tr></tbody></table><p>Model Class = The class containing maximum frequency = (8-12)</p> <p>Here,</p> <p>L = 8</p> <p>f<sub>0</sub> = 6</p> <p>f<sub>1</sub> = 8</p> <p>f<sub>2</sub> = 5</p> <p>\begin{align*} Mode\;(M_o) &amp;= L\;+\;\frac {f_1\;-\;f_0}{2f_1\;-\;f_0\;-\;f_2}\\ &amp;= 8 + \frac {8\;-\;6}{2\;&times;\;8\;-\;6\;-\;5}\\ &amp;= 8\;+\;\frac 85\\ &amp;= 9.6\;years\\ \end{align*}</p> <p>\begin{align*} Mean\;Deviation\;from\;Mode &amp;= \frac {\sum {f}\begin{vmatrix}X - M_o\end{vmatrix}}N\\ &amp;= \frac {34}{25}\\ &amp;= 1.36\;years_{Ans}\\ \end{align*}</p>

Q18:

Find the mean from median of the following data:

Age (in years) 20-30 30-40 40-50 50-60 60-70
No. of people 5 7 8 6 4

Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Calculation of Mean Deviation from Median</p> <table width="466"><tbody><tr><td>Age (in years)</td> <td>Mid-value (X)</td> <td>Frequency (f)</td> <td>c.f.</td> <td>\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> <td>f\(\begin{vmatrix}X - M_d\end{vmatrix}\)</td> </tr><tr><td>20-30</td> <td>25</td> <td>5</td> <td>5</td> <td>18.75</td> <td>93.75</td> </tr><tr><td>30-40</td> <td>35</td> <td>7</td> <td>12</td> <td>8.75</td> <td>61.25</td> </tr><tr><td>40-50</td> <td>45</td> <td>8</td> <td>20</td> <td>1.25</td> <td>10</td> </tr><tr><td>50-60</td> <td>55</td> <td>6</td> <td>26</td> <td>11.25</td> <td>67.5</td> </tr><tr><td>60-70</td> <td>65</td> <td>4</td> <td>30</td> <td>21.25</td> <td>85</td> </tr><tr><td></td> <td></td> <td>N = 30</td> <td></td> <td></td> <td>\(\sum f\)\(\begin{vmatrix}X - M_d\end{vmatrix}\) = 317.5</td> </tr></tbody></table><p>\begin{align*} Class\;of\;Median &amp;= (\frac N2)^{th}\;item\\ &amp;= (\frac {30}2)^{th}\;item\\ &amp;= 15^{th}\;item\\ \end{align*}</p> <p>15<sup>th</sup> item represents (40-50) class</p> <p>Here,</p> <p>L = 40</p> <p>\(\frac N2\) = 15</p> <p>c.f. = 12</p> <p>f = 8</p> <p>I = 10</p> <p>\begin{align*} Median\;(M_d) &amp;= L\;+\;\frac {\frac N2 - c.f.}f\;&times;\;I\\ &amp;= 40\;+\;\frac {15\;-\;12}8\;&times;\;10\\ &amp;= 40\;+\;\frac {30}8\\ &amp;= 43.75\\ \end{align*}</p> <p>\begin{align*} M.D.\;from\;Median &amp;= \frac {\sum {f}\begin{vmatrix}X - M_d\end{vmatrix}}N\\ &amp;= \frac {317.5}{30}\\ &amp;= 10.58years_{Ans}\\ \end{align*}</p>

Videos

Mean Absolute Deviation
Mean Deviation Equation
System Tools

System Tools

What are System Tools?

Do some basic maintenance from time to time to keep Windows XP running smoothly. Windows XP provides you with some basic tools to make the maintenance process. You can access these tools via the System Tools menu.

Disk Defragmenter

All Windows XP computers have at least one hard disk. The hard disk acts as your computer's storage area. Almost everything installed on your computer- applications, files, folders, and operating system- is stored here.

With general use, your hard disk can become fragmented. This means that parts of the same disk file become scattered over different areas of the disk. A fragmented hard disk slows down your computer and hinders its performance.

To keep your hard disk running smoothly, you must routinely defragment or defrag the hard disk. The Disk Defragmenter tool can help you do this.

To use Disk Defragmenter

  • Choose Start.-----All Programs------Accessories----------System Tools-----Disk Defragmenter.
  • The Disk Defragmenter opens.

To open Microsoft Management Console

  • Open Disk Defragmenter.
  • Open the Action menu.
  • Click Help.

A microsoft Management Console opens and explains how to run Disk Defragmenter.


Disk Cleanup

Disk Cleanup is another tool that helps to keep Windows XP operating as it should. It inspects your hard disk and looks for the files that can be safely deleted. Deleting unnecessary files free up valuable disk space.

To Run Disk Cleanup

  • Choose Start--------All Programs-------Accessories-------System Tools--------Disk cleanup.
  • The Disk Cleanup window opens. Click the Disk Cleanup tab if it's not showing.
  • Disk Cleanup lists several potential files that can be deleted and the amount of disk space you'll gain by emptying each one.
  • To learn more about a file category, click it and click the View Files button. A description appears.
  • Click the check boxes next to the categories you want to delete and click OK.
  • A dialog box appears, stating, Are you sure you want to perform these actions? Click Yes or No as appropriate.

Lesson

Operating System

Subject

Computer

Grade

Grade 9

Recent Notes

No recent notes.

Related Notes

No related notes.